The Petit Institute is the home of several research centers. The Petit Institute's role is to provide infrastructure to support research centers so that each center does not have to try to maintain its own staff and resources. Support comes in the form of access to core facility usage as well as other services such as accounting, marketing, and website support, event planning, multi-investigator proposal development, industry relations, and tech transfer to facilitate center operation.
Atlantic Pediatric Device Consortium
The Atlantic Pediatric Device Consortium (APDC) is partially funded by the FDA Office of Orphan Projects Development and provides a national platform to translate ideas through the product development pathway all the way to commercialization. Our mission is to enhance the lives of children through the development of novel pediatric medical devices which are both safe and effective. The Consortium fosters an environment of creativity, where innovative ideas will be reviewed, tested, and developed.
Biomaterials
Georgia Tech investigators are working on next-generation biomaterial technologies that integrate synthetic materials with biological functionalities to create innovative biomaterials that specifically interact with biological systems to elicit prescribed responses and biological integration. This research encompasses analyses of fundamental mechanisms controlling host responses, design and synthesis of multi-functional materials, and evaluation in vitro and in vivo functional testbeds necessary for translation of these technologies into real-world applications.
Center for Bio-Imaging Mass Spectrometry
The goal of the Bio-Imaging Mass Spectrometry Initiative (BIMS) is to further the development of techniques, instrumentation, and the fundamental understanding of mass spectrometry used to produce 2D and 3D images of biological samples. These meetings will also provide an outlet to discuss success as well as troubleshoot difficulties encountered while undertaking projects related to this research.
Center for Chemical Evolution
How life began is arguably the most intriguing question of our time. Determining the chemistry required for the de novo appearance of life is also an important scientific problem, as its solution will have a major impact on chemistry, other scientific fields, and the general public. The long-term research objective of our CCI is to demonstrate that small molecules within a model inventory of prebiotic chemistry can self-assemble into polymers that resemble RNA and proteins. The members of this Center hold the common belief that achieving a “one-pot” self-assembly of life-like polymers is a realistic goal.
Center for Drug Design Development & Delivery
The Center for Drug Design Development & Delivery, or CD4, is an incomparable center that seeks to provide new and refreshing ideas and interpretations to traditional pharmaceutical research. CD4 is making grand strides in accomplishing these efforts by operating through its three main projects: the Pharmaceutical Pipeline Project, the Vaccine Technology Project, and the Pharmaceutical Education Project.
Center for ImmunoEngineering
At the Center for ImmunoEngineering at Georgia Tech engineers, chemists, physicists, computational scientists, and immunologists come together to collaboratively understand how the immune system works and find breakthrough solutions to improve the lives of patients suffering from cancer, infectious diseases (e.g. HIV, tuberculosis, hepatitis, polio, etc.), autoimmune and inflammatory disorders (e.g. diabetes, lupus, multiple sclerosis, arthritis, fibrosis, asthma, etc.) as well as those undergoing regenerative therapies (e.g. organ transplantation, spinal cord injury, bone, and cartilage repair, etc.).
Center for Innovative Cardiovascular Technologies
The Center for Innovative Cardiovascular Technologies (CICT) brings together the translational cardiac community in the greater Atlanta area. It will also have a tremendous impact on economic development in the State of Georgia. CICT is a key component of Georgia Tech’s overall strategy in Translational Biomedical Research to help make Atlanta a major center for innovations in health care.
Center for Integrative Genomics
The Center for Integrative Genomics (CIG) at Georgia Tech is a virtual affiliation of researchers interested in the application of genome-wide research strategies to diverse biological themes. The goals of the center are to: Conduct quantitative genetic analysis of Genomes, Transcriptomes, Proteomes, Metabolomes, and Phenomes and foster partnerships within the School of Biology, across Georgia Tech, and with collaborators in the Atlanta region.
Center for Nanobiology of the Macromolecular Assembly Disorders - NanoMAD
Accordingly, the Center will utilize the combined expertise of Georgia Tech and Emory University researchers who employ a variety of in vivo, in vitro, and in silico approaches and represent different fields of study, including genetics; molecular, cellular, and structural biology; chemistry, biochemistry, and synthetic biology; chemical, biomolecular and biomedical engineering; bioinformatics and computational biology. NanoMAD's mission is to develop new technologies for detecting, monitoring, and controlling self-assembled macromolecular complexes at various levels, including their pathogenic consequences, biological roles, and evolutionary origin.
Center for Pediatric Innovation
The mission of the Center for Pediatric Innovation (CPI) is to develop new medical devices, therapeutics, and regenerative medicine strategies to address grand challenges and unmet clinical needs in pediatric healthcare. Industry has made significant advances in technologies that impact healthcare delivery, but for the most part, these advances have targeted adult populations.
Center for Pharmaceutical Development
The Center for Pharmaceutical Development (CPD), established in February 2010, provides a forum for academic and industrial scientists to develop novel approaches for the improvement of pharmaceutical API manufacturing, for product formulation, and for analytical methods. The distinctive strengths of each of the University partners will provide industrial participants with unique opportunities to advance topics on the manufacturing, formulation, and analysis of pharmaceuticals. The Center facilitates technologies such as the creation of more selective and robust biological and chemical catalysts that allow more streamlined processes, the development of improved methods for stabilizing drugs and vaccines to protect the nation’s drug supply, and the design of new techniques for the nondestructive evaluation of pharmaceutical products.
Emergent Behavior of Integrated Cellular Systems
To reach this goal, the Center's research program has three components of increasing complexity, plus an enabling technologies thrust. EBICS' educational programs aim at producing the next generation of research and education leaders who are truly knowledgeable in both biology and engineering, and who will potentially shape how research and education are done in this new field. The Center will also engage faculty from minority-serving institutions on research projects, and work closely with existing outreach and recruitment programs at all partner institutions to ensure the broadest range of participation in all of its programs.
Integrated Cancer Research Center
The mission of the Integrated Cancer Research Center (ICRC) is to facilitate integration of the diversity of technological, computational, scientific and medical expertise at Georgia Tech and partner institutions in a coordinated effort to develop improved cancer diagnostics and therapeutics.
Nanomedicine Center for Nucleoprotein Machines
The Nanomedicine Center for Nucleoprotein Machines focuses on understanding and re-directing natural processes for repair of damaged DNA. Human cells have many different repair pathways, each of which involves a different type of nucleoprotein machine. The Center’s five-year goal is to re-engineer the homologous recombination repair machine to provide a clinically applicable gene correction technology. The Center’s vision is to design, produce, deliver, and validate a gene correction device based on engineered zinc finger nucleases. The device will home to the defective gene in the patient’s hematopoietic stem cells and make a precise cut to activate the HR machine, which will replace the mutation with the correct beta-globin sequence. The approach can potentially be extended for treatment of other single-gene disorders.
Neural Engineering Center
The Neural Engineering Center develops cutting-edge science and technology for measuring, understanding, modifying, and stimulating neural activity. There is a critical need for novel collaborative integration between researchers developing interfacing technologies and those advancing our scientific understanding of brain and nervous system function. Applications of these technologies span advancing understanding of neural function to translational methods that improve clinical outcomes.
Regenerative Engineering and Medicine (REM)
The Regenerative Engineering and Medicine (REM) research center is a joint collaboration between Emory University and Georgia Tech. REM is specifically focused on endogenous repair or how the body can harness its own potential to heal or regenerate. Bone, muscle, nerves, heart, blood vessels, and other tissues each have a baseline ability to regenerate. REM investigators ask what can be done when trauma or disease in humans overwhelms the ability of tissues or organs to regenerate on their own.
Vision: The integration of engineering technologies, biological discoveries, and clinical expertise and infrastructure will establish Georgia as a national leader in regenerative clinical therapies.
Mission: To fundamentally transform the treatment of human diseases and injuries through the development and translation of new technologies that enhance the body’s ability to heal itself.
Ribosomal Evolution and Adaptation
The Center for Ribosomal Origins and Evolution was established at Georgia Institute of Technology in February 2009 as part of the NASA Astrobiology Institute (NAI). The NAI is a partnership between NASA and its NAI Teams located at academic institutions such as Georgia Tech, research laboratories, and NASA centers. Together these teams work to define and conduct integrated interdisciplinary research and education in astrobiology.