Interdisciplinary Ph.D. in Quantitative Biosciences
Graduate Handbook
January 2023

Note: Most students will read this handbook in order to figure out how to do something en route to obtaining a Ph.D. in Quantitative Biosciences at Georgia Tech. Broadly, this handbook includes information on degree requirements – from courses to thesis – and administration of the program. The topics in this handbook will be summarized in the orientation for all incoming students. In addition, all students are encouraged to review this document on a yearly basis.

Table of Contents

A. Introduction ... 3

B. Deadlines and Timelines ... 3
 B.1 Major Milestones ... 4
 B.2 Typical Timeline for Completion of a Ph.D. in QBioS .. 4

C. Degree Requirements .. 5
 C.1 Summary of Requirements ... 5
 C.2 Program of Study ... 6
 C.2.1 Core courses ... 6
 C.2.2 Interface minor .. 7
 C.2.3 Rotations .. 7
 C.2.4 Academic Writing Requirement ... 7
 C.2.5 Approval of Thesis & Advancement to Candidacy .. 7
 C.2.6 Publication Requirement .. 8
 C.2.7 Thesis Defense .. 8
 C.3 Graduate Coursework from Other Universities and Programs ... 8
 C.4 Honor Code ... 8

D. Ph.D. Thesis .. 8
 D.1 Selecting an Advisor .. 9
 D.2 Committee Formation ... 9
 D.3 Qualifying Exam ... 9
 D.3.1 Written Thesis Proposal ... 9
 D.3.2 Oral Defense of Proposal .. 9
 D.3.3 Procedures for Re-examination of the Proposal ... 10
 D.4 Yearly Thesis Review ... 10
 D.5 Ph.D. Thesis defense .. 10
 D.5.1 Procedures prior to the defense ... 10
 D.5.2 Procedures During the Defense .. 10

E. Stipend, Duties, Registration & Fees .. 11
 E.1 Home School .. 11
 E.2 Financial Support .. 11
 E.3 Assistantship Duties .. 12
 E.4 Registration .. 12
 E.4.1 General Issues ... 12
 E.4.2 Cross-registration ... 12
A. Introduction
This document describes Georgia Tech’s Interdisciplinary Graduate Program in Quantitative Biosciences. The program was founded in 2015. This document includes detailed information about the program of study, degree requirements, financial support, administrative matters, facilities, etc. Specific questions should be addressed as needed to the Director of the Program – director@qbios.gatech.edu - and to the administrative support – admin@qbios.gatech.edu. Updates to this handbook will be announced to students & faculty and posted on the QBioS website – http://qbios.gatech.edu.

Director of Program
William Ratcliff, Ph.D., Associate Professor
School of Biological Sciences, Georgia Institute of Technology
director@qbios.gatech.edu or william.ratcliff@biology.gatech.edu

Co-Director of Program
Joshua S. Weitz, Ph.D., Professor and Tom and Marie Patton Chair
School of Biological Sciences, Georgia Institute of Technology
director@qbios.gatech.edu

Associate Director of Program
JC Gumbart, Ph.D., Associate Professor
School of Physics, Georgia Institute of Technology
gumbart@physics.gatech.edu

Graduate Committee
William Ratcliff (Chair, SoBS), Young-Hui Chang (SoBS), Hannah Choi (MATH), Neha Garg (CHEM), Daniel Goldman (PHYS), Chris Reinhard (EAS), Alberto Stolfi (SoBS), Joshua Weitz (SoBS), Peter Yunker (PHYS).

Administrative Manager
Lisa Redding, School of Biological Sciences, admin@qbios.gatech.edu or lisa.redding@biosci.gatech.edu

Home Schools
Biological Sciences – SoBS
Chemistry and Biochemistry – CHEM
Earth and Atmospheric Sciences – EAS
Mathematics – MATH
Physics – PHYS
Psychology – PSYC

B. Deadlines and Timelines
The timelines represent a typical trajectory and issues of exceptions are dealt with in the appropriate sections of the handbook.
B.1 Major Milestones

<table>
<thead>
<tr>
<th>Time/Years</th>
<th>Milestone</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.5</td>
<td>Core course completion</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>1.0</td>
<td>Selection of thesis advisor</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>1.0</td>
<td>Formation of initial Ph.D. committee</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>2.0</td>
<td>Written proposal and oral defense</td>
<td>See Ph.D. Thesis</td>
</tr>
<tr>
<td>3.5 – 4.5</td>
<td>Thesis approval</td>
<td>Must occur 6 months prior to defense</td>
</tr>
<tr>
<td>5</td>
<td>Thesis Defense (with at least one</td>
<td>Approval form signed by committee and</td>
</tr>
<tr>
<td></td>
<td>publication)</td>
<td>must be submitted to the QBioS Office</td>
</tr>
<tr>
<td>Continuous</td>
<td>Yearly Updates</td>
<td>Scheduled by the Student</td>
</tr>
</tbody>
</table>

B.2 Typical Timeline for Completion of a Ph.D. in QBioS

The QBioS program is designed to keep students on track for learning core material and proposing a thesis dissertation in years 1 and 2. Subsequently, the student, advisor and committee collaboratively ensure the development and completion of the thesis in years 3-5. The five-year schedule of a typical student will involve classes, research and teaching experiences, as below. Detailed information on each component is provided in subsequent sections.

Year 1

<table>
<thead>
<tr>
<th>Recommended 1st year program</th>
<th>Fall semester</th>
<th>Spring semester</th>
<th>Summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including:</td>
<td>A1. Foundations in QBioS (4 hours)</td>
<td>A1. Quantitative Modeling (3 hours)</td>
<td>A. Writing course, if required (2 hours)</td>
</tr>
<tr>
<td>A – Courses</td>
<td>A2. Quantitative Modeling (3 hours)</td>
<td>A2. Elective in Biosciences (3 hours)</td>
<td>B. Thesis research (12 hours)</td>
</tr>
<tr>
<td>B – Rotation + research</td>
<td>A3. Elective in Biosciences (3 hours)</td>
<td>A3. QBioS Seminar (1 hour)</td>
<td></td>
</tr>
<tr>
<td>C – Teaching</td>
<td>A4. QBioS Seminars (2 hours)</td>
<td>A4. RCR training</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Teaching assistantship (3 hours, home school)</td>
<td>B. Rotation (6 hours)</td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Typical 2nd year program</th>
<th>Fall semester</th>
<th>Spring semester</th>
<th>Summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Courses</td>
<td>A2. Elective in Biosciences (3 hours)</td>
<td>B1. Thesis research (12 hours)</td>
<td>B2. Thesis research (12 hours)</td>
</tr>
<tr>
<td>C – Teaching</td>
<td>(support expected from GRAs)</td>
<td>(support expected from GRAs)</td>
<td></td>
</tr>
</tbody>
</table>

Years 3-4 – Students should have passed their qualifying exams and will devote near 100% of their time to thesis related research. They are encouraged to take additional classes in consultation with their thesis advisor and committee.

Year 5

<table>
<thead>
<tr>
<th>Fall semester</th>
<th>Spring semester</th>
<th>Summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical final year program
Including:
A – Courses
B – Rotation + research
C – Teaching

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations in Quantitative Biosciences (1 course)</td>
<td>4</td>
</tr>
<tr>
<td>Seminars in Quantitative Biosciences (3 courses)</td>
<td>3</td>
</tr>
<tr>
<td>Quantitative Modeling core, including a computational-focused class (3 courses)</td>
<td>9</td>
</tr>
<tr>
<td>Bioscience disciplinary electives (2 courses, including one involving the application of quantitative methods to the biosciences)</td>
<td>6</td>
</tr>
<tr>
<td>Quantitative Models in the Biosciences (1 course)</td>
<td>3</td>
</tr>
<tr>
<td>Scientific interface minor (3 courses, equivalent to Institute approved minor, of which 3 hours must be distinct from courses listed above)</td>
<td>9 (3 new)</td>
</tr>
<tr>
<td>Rotations</td>
<td>6</td>
</tr>
<tr>
<td>Thesis research</td>
<td>15 (minimum)</td>
</tr>
<tr>
<td>Total</td>
<td>25 core course hours, 3 seminar hours, 6 rotation hours, 15 thesis hours</td>
</tr>
</tbody>
</table>

C. Degree Requirements

C.1 Summary of Requirements
The Ph.D. in Quantitative Biosciences is designed to give graduates training in the quantitative analysis of problems in the biosciences – spanning foundational advances and application to challenges in human health, energy and the environment. The requirements include:

1. a program of study in core QBioS biosciences and quantitative modeling courses;
2. a coherent interface Minor course of study;
3. a minimum of two group rotations in the first year;
4. an English writing class (if recommended by committee);
5. a Thesis Proposal;
6. acceptance of at least one scientific publication;

There is no comprehensive qualifying exam and no foreign language requirement. Georgia Tech requires that all doctoral students maintain a 3.0 grade point average. With the permission of the research supervisor and the QBioS Director, Ph.D. students may seek a concurrent MS degree. If so, the courses taken for the MS may be counted to satisfy the Minor requirement. During the semester preceding the semester when the Ph.D. degree is expected, students must submit an Online Application for Graduation to the Registrar. The complete set of requirements involving credit hours are listed in the following Table. The majority of coursework should be completed in years 1-2, with thesis research representing the bulk of credit hours in years 3-5:
C.2 Program of Study

First-year students are required to take a foundations course, two seminar courses, two modeling courses and two bioscience courses in their first year. Students are expected to earn course grades of A, B, or P (pass) in both semesters. One course grade of C is permitted in either the first or second semester (not both). Students who earn two or more grades of C or any number of D or F grades may not continue in the Ph.D. program without the explicit permission of the QBioS Graduate Committee. Incoming Ph.D. students demonstrate their grasp of the core principles of Quantitative Bioscience by taking multiple courses (described below). Note that the Seminars in Quantitative Biosciences are taken on a pass/fail (P/F) basis. The other core courses must be taken on a letter grade (LG) basis. Course listings are found in Appendix B but may, in some instances, also be selected across the Institute’s offerings via permission of the student’s supervising committee.

C.2.1 Core courses

Core Introductory Courses – All Required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL/PHYS 6750</td>
<td>Foundations of Quantitative Biosciences</td>
<td>4 hours</td>
</tr>
<tr>
<td>BIOL 8801</td>
<td>Seminar in Biology – Quantitative Biosciences</td>
<td>1 hour</td>
</tr>
<tr>
<td>BIOL 8801</td>
<td>Seminar in Biology – Quantitative Biosciences</td>
<td>1 hour</td>
</tr>
<tr>
<td>BIOL 8801</td>
<td>Professional Development in Quantitative Biosciences</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

These four courses taken in the first year are taken by all QBioS Ph.D. students. The Foundations class is organized around the understanding of key advances in the biosciences, one organizing unit at a time, in which the advances depended critically on quantitative methods and reasoning. The overall objective of the course is to teach graduate students how to reason quantitatively in the biosciences given uncertainty in mechanisms, rates and reliability of measurements. The Seminar classes will enable students to meet, learn and discuss rotating topics representing ongoing advances in QBioS with Program Faculty.

Quantitative Modeling Core (3 courses):
Students select courses a la carte that involve rigorous quantitative methods and models.

Bioscience Disciplinary Electives (2 courses):
Students select courses a la carte that deepen student understanding of the biosciences in one of the following areas:

- Chemistry of Biological Systems
- Molecular and Cellular Systems
- Physiology & Behavior
- Ecology
- Evolution
- Earth Systems

Quantitative Models in the Biosciences (1 course):
Students select one course a la carte that satisfies the requirement that students take a course involving the direct application of quantitative methods to the biosciences. All courses satisfying this requirement are 3 credit hours, including problem sets, involving mathematical and computational methods.
C.2.2 Interface minor
Students select three courses that will enhance the thesis and enable the development of breadth and flexible thinking in the student. This requirement will also serve, in part, to satisfy the Institute required minor. One of these courses must be in addition to those taken as part of the core course requirements.

C.2.3 Rotations
Special Problems (BIOL/PHYS/home school 8901) is two, 3-hour courses arranged with two distinct QBioS program faculty members in the spring semester of the first year. Registration requires the permission of two professors. The Special Problems should be viewed as a serious opportunity to begin Ph.D. research. Students should also register for a Special Problem in the summer of their first year for 12 credit hours. In most cases this course will have a single professor using the special problem designation appropriate to the School of the advisor and the special problem advisor will represent the eventual thesis advisor of the student. However, students are permitted to arrange for up to 2 additional rotations using Special Problems mechanism in the summer of their first year. Selection of a thesis advisor is expected for all students by the end of their first year in the program.

C.2.4 Academic Writing Requirement
All students must demonstrate competency in academic and technical writing to complete the academic writing requirement. The student’s TPC is responsible for evaluating this requirement, through evaluation of first-authored publications and/or the thesis proposal. In the event that students require additional training, the TPC may recommend that students take and pass a semester-long graduate course in English-language academic writing. For non-native English speakers, the relevant course is CETL 8723. Non-native speakers may also take ESL-OL01L thorough the GT Language Institute. This online course is aimed at international graduate students and helps them develop a fundamental understanding of the basic principles of academic research writing. For native English speakers, the relevant course is CETL 8721. At this time, the Center for Teaching and Learning plans to offer the 8721 course during summer semesters only. For all students, the writing requirement should be discussed as part of the initial TPC meeting and the initial evaluation of the writing requirement should be completed no later than the end of the 2nd year, consistent with the scheduling of the thesis proposal.

C.2.5 Approval of Thesis & Advancement to Candidacy
By the end of the second summer at Georgia Tech, every QBioS Ph.D. student must seek admission to candidacy by presenting a 10-page Proposal, including 2 additional pages of references to a Thesis Proposal Committee (TPC) composed of their primary research supervisor and 3 other faculty members. Of these 3, at least one must be from the QBioS program faculty. Every student is required to defend their Proposal to their TPC in the form of a 45 minute oral presentation followed by brief questions from the public, followed by an additional 30-60 minutes of questions from the committee. The written Thesis Proposal should contain (1) a review of the literature of their field; (2) a discussion of how the proposed research fits into that field; and (3) a summary of preliminary results. Each TPC member (except for the supervisor) is expected to ask questions designed to probe the students’ understanding of their proposed research. It is the responsibility of the TPC to decide if the student “passes” or “fails” the Thesis
Proposal. A student who passes is formally admitted to Ph.D. candidacy. A student who fails must rewrite his/her Thesis Proposal and/or repeat the oral presentation no later than the subsequent semester as directed by their TPC.

C.2.6 Publication Requirement
Some portion of the Ph.D. candidate's research must have been submitted as a “first-author” publication in a refereed scientific journal or suitable public archive before the thesis defense. Given differences in fields and author order conventions, here we use the term “first-author” to denote the person primarily (or equally) responsible for conducting the research that led to publication. The term first-author applies to “joint” designations of first-authorships. In fields in which last name ordering is used, the “first-author” requirement is satisfied so long as the student was primarily – whether solely or jointly – responsible for conducting the research that led to publication.

All publications arising during your PhD include 2 addresses:
1. Interdisciplinary Graduate Program in Quantitative Biosciences;
2. Your home school (School of Biological Sciences, School of Physics, etc.).
The physical address can be the same (i.e., Georgia Institute of Technology, Atlanta, GA 30332).

C.2.7 Thesis Defense
The thesis defense is the capstone of the QBioS Ph.D. – and is described in Section D.

C.3 Graduate Coursework from Other Universities and Programs
Graduate level course work taken for a Master’s degree (even at another university) may be included in the Ph.D. Program of Study provided that a grade of B or better was earned for these courses. The submitted program of study and course justification should also include a copy of the student’s transcript and a detailed course description and syllabus for each course for which the student wishes to receive credit. The QBioS Graduate Committee typically approves up to two courses (6 credit hours). Students may appeal to count more in extenuating circumstances.

C.4 Honor Code
All participants in QBioS Graduate Program are expected to uphold the Academic Honor Code at all times. The Honor Code is intended to continuously remind students and faculty of the importance of honesty and responsible conduct in their professional lives. It also serves to increase awareness on the part of both students and faculty of the rules regarding academic honesty and the process to be followed if these rules are broken. Since graduate students are involved in research and scholarly activities which occur outside the classroom, the Georgia Tech Academic Honor Code contains a Graduate Addendum to address additional aspects of academic integrity associated with such activities. Graduate students are also encouraged to become familiar with the Institute Policy on Scholarly Misconduct, located at http://www.policylibrary.gatech.edu/faculty-handbook/5.7-policy-responding-allegations-scientific-or-other-scholarly-misconduct.

D. Ph.D. Thesis
D.1 Selecting an Advisor
Students will rotate with two different QBioS faculty members in the spring of their first year, with additional opportunities for up to two more rotations in the summer of their first year. QBioS students should identify a thesis advisor no later than the end of the summer of their first year. Upon mutual agreement, the student and advisor will inform the QBioS graduate committee which will then review and confirm all requests.

D.2 Committee Formation
Students should identify a Thesis Proposal Committee (TPC) composed of their primary research supervisor and 3 other faculty members, of these 3, at least one must be from the QBioS program faculty. The TPC is responsible for evaluating the proposal and should be constituted in the fall semester of the 2nd year in the program – and hold an initial, advisory meeting with the student. In most cases the TPC members continue to serve as members of the Thesis Reading Committee (TRC) after the student passes their qualifying exam.

Georgia Tech requires that all doctoral students have five members for their final thesis committee (Thesis Reading Committee), three of whom must be academic faculty. Georgia Tech requires that one committee member must be outside the student’s home school. QBioS requires that the Thesis Reading Committee includes five faculty members*, composed of your primary research advisor and four other members. Of these four members, at least two must be members of the academic faculty of QBioS program and at least one must be external to the QBioS program.

*GT allows external committee members that are not faculty (e.g., staff scientist or museum curator), so long as they hold a PhD. Graduate Studies will review their CV before they are allowed to serve on your committee.

D.3 Qualifying Exam

D.3.1 Written Thesis Proposal
By the end of the second year at Georgia Tech (no later than September 30 of year 3), every QBioS Ph.D. student must seek admission to candidacy by presenting a 10-page Proposal, including 2 additional pages of references to a Thesis Proposal Committee (TPC). Criterion for evaluating the quality of the proposal will be distributed by the TPC to the student in advance of the proposal development and submission. The written Thesis Proposal should contain (1) a review of the literature of their field; (2) a discussion of how the proposed research fits into that field; (3) a summary of preliminary results; (4) a description of the planned work and primary aims of the thesis.

D.3.2 Oral Defense of Proposal
Every student is required to defend their Written Thesis Proposal to their TPC in the form of a 45 minute oral presentation followed by brief questions from the public, followed by an additional 30-60 minutes of questions from the committee. The oral defense should take place no later than September 30 following the second year of study. Each TPC member (except for the supervisor) is expected to ask questions designed to probe the students’ understanding of their proposed research. It is the responsibility of the TPC to decide if the student “passes” or “fails” the Thesis Proposal – judged comprehensively based on the quality of the written and oral components. A student who passes is formally admitted to Ph.D. candidacy.
D.3.3 Procedures for Re-examination of the Proposal
A student who fails must rewrite his/her Thesis Proposal and/or repeat the oral presentation as directed by their TPC. The re-examination must occur no later than the semester subsequent to the initial exam. A student who fails his/her examination twice will be removed from the PhD program but can choose to ‘Master’ out through timely completion of a MS degree in their Home School, typically in the same or next semester.

D.4 Yearly Thesis Review
The student should meet with his/her Thesis Reading Committee on at least a yearly basis to review research progress. Students are required to complete an annual progress update that is due at the start of each subsequent fall semester or upon graduating and will be distributed electronically.

D.5 Ph.D. Thesis defense

D.5.1 Procedures prior to the defense
Institute-Required Forms: To complete its records for each Ph.D. student, the Registrar’s Office requires an Online Application for Graduation, which must be submitted to the Registrar’s Office prior to the student’s final semester. The exact date is listed in the official school calendar by semester.

Enrollment Status: The student must be registered during the semester in which the final presentation occurs. A student must also be registered the semester he/she plans to graduate unless an enrollment waiver is requested and approved. An enrollment waiver will not be approved if the Thesis has not been accepted by the Graduate Studies Office by the published deadline.

Thesis Documents: The Ph.D. thesis presentation consists of (1) a written thesis document and (2) an oral presentation and examination evaluated by the Ph.D. Thesis Reading Committee. The thesis document must be received by the members of the thesis committee at least two full weeks prior to the oral presentation and examination. The student should contact each committee member to arrange the delivery of the written thesis in either hard-copy or electronic format.

Scheduling: The student must poll the committee and establish a date and time for the presentation, reserve a room and prepare an announcement of the presentation. The student is responsible for reserving the room and obtaining the necessary audio-visual equipment prior to the oral presentation. Some faculty have extremely busy schedules, and this step should be done at least 6 weeks in advance to ensure faculty availability.

D.5.2 Procedures During the Defense
The thesis defense includes an oral presentation of the findings of the thesis, questions from the audience and the committee, and a closed Q&A with the student and the thesis reading committee (TRC). After successful public defense of the Thesis, the candidate prepares a final manuscript incorporating the modifications required by the Thesis Committee. After obtaining
approval signatures from the Thesis Committee and the Director of QBioS, the candidate should follow the electronic submission, printing and distribution specified online.

E. Stipend, Duties, Registration & Fees

E.1 Home School
The QBioS Graduate Program is one of Georgia Tech’s few interdisciplinary graduate programs. It is independent of any particular school or department and is supported by the College of Sciences. Participating academic units are called Home Schools.

The participating Home Schools in QBIOS include the Schools of Biological Sciences (BIOL), Chemistry and Biochemistry (CHEM), Earth and Atmospheric Sciences (EAS), Mathematics (MATH), Physics (PHYS) and Psychology (PSYC).

Home Schools admit students to QBioS and set administrative policies for students in that Home School (such as stipend policies). Home Schools do not administer degree requirements, such as thesis proposal evaluation, approval of programs of study, and procedures related to dissertation committee selection and defense. Home Schools cannot alter any programmatic requirements.

The Home School of the student, as well as the student’s research advisor (if a different Home School), also set policies regarding laboratory and research infrastructure: examples include office space, mail boxes, faxes, photocopying, travel rules, vacation policies, etc. The Home School is also responsible for the administration of tuition waivers.

Faculty may apply for QBioS membership if they have at least a 25% FTE appointment in any of the participating Schools. Program faculty may advise QBioS students in any home school.

E.2 Financial Support
All issues of financial support are a matter between the Home School and the student. Please follow your Home School’s policies regarding forms and deadlines to avoid any discontinuation of support. This is especially important if your Home School is not that of your advisor.

Typically, students are supported via a GTA in the fall and spring of their first year and via a GRA in the summer of their first year. Subsequent support is provided by a combination of GRAs, GTAs and fellowships. Three types of financial aid are available to qualified graduate students:

1. GRA/GTAs (Graduate Research Assistantships/Graduate Teaching Assistantships). These are awarded on the basis of academic potential and performance and not on the basis of need. They are awarded either at the time of your offer of admission or by a faculty member wishing to support you in his/her laboratory as a GRA.

2. External Fellowships. Students are highly encouraged to apply for external fellowships such as NSF, NDSEG, Department of Energy, Department of Homeland Security, and NIH NRSAs. Most of these are only available to US citizens and permanent residents. A web page describing
many of these opportunities is located at https://grad.gatech.edu/fellowship-and-funding-inquiries-faq.

E.3. Assistantship Duties
Typically, a GTA works for the Home School for 12-14 hours/week. A student may be asked to (a) supervise undergraduate laboratories, (b) proctor examinations, (c) grade homework, or (d) tutor undergraduates. A GRA works as part of an individual professor’s research team. A student's duties are to conduct research toward a student's Ph.D. GRA salaries are paid from the research grants of individual professors. Therefore, once a student is committed to a professor for a student's Ph.D., a student must ask him/her before registering each semester to learn whether he or she will be a GRA or a GTA for the coming semester.

E.4 Registration

E.4.1 General Issues
Not long after mid-term every semester, Phase I registration opens for the next semester. Phase II registration opens just before each semester begins. It also lasts two weeks. **Plan to register during Phase I.** Note: even if a student registers during Phase I, he/she does not need to pay the registration fee until the beginning of Phase II. During Phase I in the spring, students can register for both summer and fall classes. The registration web site is https://oscar.gatech.edu. **There is no reprieve for forgetting to register** – you will not be eligible to be paid as a GRA and will be responsible for paying all tuition and fees for the following semester. The Registrar is strict with respect to fee payment and registration deadlines. Registration dates are available online: http://www.registrar.gatech.edu/registration/calendar.php. See Appendix C for sample registration during Year 1.

E.4.2 Cross-registration
Graduate students may cross-register for courses at other Atlanta-area universities, such as Emory University and Georgia State University, via the Atlanta Regional Consortium for Higher Education (ARCHE). You must be a full-time student in good academic standing at the time of application in order to cross-enroll. The deadline for cross-enrollment is part-way through the semester preceding he intended enrollment semester, so plan ahead. More information is available online at https://registrar.gatech.edu/registration/cross-registration. You should receive a notification by email if your cross-enrollment request is approved. Ph.D. students can simply apply such courses to their Program of Study subject to approval of the Graduate Committee.

E.5 Fees
GTA and GRA students must pay mandatory student fees during every semester of enrollment (fall, spring, and summer). Ph.D. students without any financial support pay both tuition and mandatory student fees for every semester of enrollment. The tuition and fees for students not on GTA or GRA vary based on the number of hours registered, as well as the student’s residency status (Georgia resident or non-resident). The complete tuition and fee schedule is posted at http://www.bursar.gatech.edu/content/tuition-fees. Students can pay on-line or in person at the Office of the Bursar. **Pay student fees on time to avoid late charges!**
F. Facilities

F.1 E-Mail & Telephones
The Program and the Institute communicates with students through an e-mail account that is assigned to each student. **It is essential that a student activate this account and check it every business day.** We do not provide phones in student offices. Students may use the phones in the QBioS program office for emergency outgoing calls. However, the front office does not pass on telephone messages to students. Students actively engaged in research may have access to phones in the research space of their advisors. If so, outgoing calls must be restricted to professional matters.

F.2 Mailboxes
Students have personal mailboxes in Cherry Emerson – please check these on a regular basis. The mailing address is:
School of Biological Sciences, Georgia Institute of Technology Atlanta, GA 30332-0230

F.3 Office Space
In their first year, students will be assigned a desk in a shared office space in the Cherry Emerson building with other first-year QBioS students. At the end of their first year, they will move to a desk given to them by their thesis advisor.

F.4 Room Access
A first-year student's Buzz Card opens the exterior doors of the Cherry Emerson building. A student's key or Buzz Card opens a student's office, the mailroom, the computer cluster (S021), and two rooms on the second floor (common room, library). Books and journals from the library can be removed for photocopying only.

F.5 Travel Funds
The Director maintains a small fund to support graduate student travel to professional conferences. A student may apply for these funds once during his/her time at Georgia Tech. To apply, send a brief letter of request, endorsed by the student's research supervisor, to the Director stating what a student intends to do and the projected cost. The Graduate Student Senate also has a fund to support professional travel. Apply directly to them: https://www.sga.gatech.edu/conferencefunds/.

F.6 Security
Our campus is in an urban environment. Take special care if walking in the adjacent neighborhoods after dark. Security on the campus and inside buildings is very good. We need students’ help to keep it that way. All persons who have reason to be in a building at night or on weekends have a key. Therefore, there is never any reason to let a person in. Never prop open a door to allow people to enter. Always lock office doors. Anyone who steals the private property of another person (or of the School itself) will be dismissed from the program. If a student ever finds unauthorized persons in a GT building, open doors, or unusual activities, report them to the campus Police (Ext 4-2500 or 404-894-2500) immediately.
G. Administrative Issues

G.1 Program Management
QBioS will be led by a program director with day-to-day operations handled by a program manager. The following sections describe the administrative structure along with responsibilities.

Program Director (PD)
The PD is responsible for overall program administration and policy directions. The PD for the Ph.D. in QBioS is Prof. William Ratcliff (School of Biological Sciences) who can be reached regarding QBioS matters at: director@qbios.gatech.edu.

Program Manager (PM)
The PM handles most routine administrative aspects of the program (such as anything involving submitting a form or requesting approval) and coordinates admissions with the Home Schools. The current program manager is Lisa Redding and can be reached regarding QBioS matters at: admin@qbios.gatech.edu.

General Faculty
This includes all faculty who participate in the QBioS program. They approve all general policies and meet regularly each semester. Faculty meetings have a quorum requirement for voting: a quorum is defined as 33% of the number of faculty actively participating in the program. See Appendix A for a current listing of QBioS program faculty.

Graduate Studies Committee
The Graduate Studies Committee oversees the operation of QBioS. The committee has responsibility for all graduate-level degree requirements, approval of Ph.D. Programs of Study forms in which transfer credit from another institution is requested and oversight of the Ph.D. thesis proposal process. A student may petition the Graduate Studies Committee regarding academic issues by submitting a petition detailing his/her request to the QBioS Program Chair. The committee meets monthly during the academic year. Members of this committee are appointed by the QBioS Program Director, who chairs the committee. The current members of the graduate studies committee are:

William Ratcliff (Chair, SoBS), Annalisa Bracco (EAS), Leonid Bunimovich (MATH), Flavio Fenton (PHYS), Neha Garg (CHEM), Simon Sponberg (PHYS), Matthew Torres (SoBS), Joshua Weitz (SoBS), Peter Yunker (PHYS)

G.2 Counseling Center
Graduate school is a life changing event, and the path is not always easy. The Counseling Center at Georgia Tech provides individual and group counseling, workshops on such topics as stress management and study skills, career counseling and psychological testing. The Center is staffed by licensed psychologists, counselors, and marriage and family therapists, as well as counselors-in-training. The Counseling Center can be reached at 404-894-2935, or you can learn more online at http://www.counseling.gatech.edu.
G.3 Transfer into the QBioS Ph.D. Program
Students seeking to transfer from their current major into the QBioS Graduate program will need to first meet the minimum GPA requirement of 3.0 and submit a narrative explaining why they wish to change to the QBioS major. Secondly, students will need a letter of endorsement from their current thesis advisor. Finally, students must not have failed their current major’s qualifying exam. Students who have failed their current major’s qualifying exam will not be considered for transfer into the QBioS graduate program. If the above conditions are satisfied, students will need to submit a change of major form that has been signed by the home school authorizing the change of major to the QBioS graduate office. These documents are then reviewed by the Chair of the QBioS graduate program as well as the QBioS Graduate Studies Committee for final approval. Students will then be notified whether they will be allowed to transfer into the QBioS program.

G.4 Changing Home Schools
QBioS allows students in any Home School to pair with advisors in any Home School. Students are bound by the administrative policies of the Home School of the student. In some cases, students may wish to change their home school; the most common scenario is to change into the Home School of the advisor. Changing Home Schools requires the consent of the student’s thesis advisor as well as the graduate office of the proposed Home School. A Change of Major form is used to facilitate this change. Contact the administrative manager of QBioS for more information: admin@qbios.gatech.edu.

G.5 Changing Thesis Advisors
A student seeking a change of advisor must first discuss the matter with his/her current advisor and satisfactorily complete all GRA and research obligations. The Program Director must be involved in these discussions to ensure that all parties’ needs and obligations are met. Upon satisfactory completion of these obligations the current advisor will then “release” the student by signing a “Change of Advisor” form. This form is then submitted to the QBioS graduate office for approval.

Appendix A. Program Faculty

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Rank</th>
<th>Home School</th>
<th>Academic Discipline</th>
<th>Area of Specialization (up to 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed Balog</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Skeletal and Cardiac Muscle Excitation-Contraction Coupling, Ryanodine Receptors</td>
</tr>
<tr>
<td>Annalisa Bracco</td>
<td>Professor</td>
<td>EAS</td>
<td>Physical Oceanography and Climate Dynamics</td>
<td>Geophysical fluid dynamics, transport and mixing in the ocean, bio-physical interactions in the ocean, climate dynamics, modeling</td>
</tr>
<tr>
<td>Sam Brown</td>
<td>Professor</td>
<td>SOBS</td>
<td>Evolutionary Biology</td>
<td>Social evolution, mathematical biology, quorum sensing, virulence, experimental microbiology</td>
</tr>
<tr>
<td>Leonid Bunimovich</td>
<td>Regents' Professor</td>
<td>MATH</td>
<td>Mathematical Biology & Ecology</td>
<td>Dynamical networks, Dynamical and Stochastic Systems</td>
</tr>
<tr>
<td>Young-Hui Chang</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Locomotion, aeromechanics, motor control, neurophysiology</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Research Areas</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Hannah Choi</td>
<td>Assistant Professor</td>
<td>MATH</td>
<td>Physiology, Computational Neuroscience, Neural Coding, Neural Networks, Mathematical Biology, Dynamical Systems</td>
<td></td>
</tr>
<tr>
<td>Jennifer Curtis</td>
<td>Professor</td>
<td>PHYS</td>
<td>Biophysics, Cell mechanics, molecular biophysics, biotechnology, optical manipulation</td>
<td></td>
</tr>
<tr>
<td>Aditi Das</td>
<td>Associate Professor</td>
<td>CHEM</td>
<td>Lipidomics, Lipidomics, enzymology, neurochemistry, targeted metabolomics, spectroscopy, membrane protein biochemistry, chemical biology, nanodisc technology</td>
<td></td>
</tr>
<tr>
<td>Thomas DiChristina</td>
<td>Professor</td>
<td>SOBS</td>
<td>Microbial Metal Respiration, Environmental Microbiology, Contaminant Biodegradation, Biogeochemistry, Climate Change</td>
<td></td>
</tr>
<tr>
<td>Stephen Diggle</td>
<td>Professor</td>
<td>SOBS</td>
<td>Microbiology, Social evolution, quorum sensing, biofilms, infection, antimicrobial resistance</td>
<td></td>
</tr>
<tr>
<td>Flavio Fenton</td>
<td>Professor</td>
<td>PHYS</td>
<td>Computational/Experimental Biophysics, Complex systems, pattern formations, physics of living systems</td>
<td></td>
</tr>
<tr>
<td>Neha Garg</td>
<td>Assistant Professor</td>
<td>CHEM</td>
<td>Human Microbiome, Metabolomics, Microbial Imaging Mass Spectrometry, Natural Product Biosynthesis, Chemical Biology, Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Jennifer Glass</td>
<td>Associate Professor</td>
<td>EAS</td>
<td>Biogeochemistry, Geochemistry, environmental microbiology, greenhouse gas cycling</td>
<td></td>
</tr>
<tr>
<td>Daniel Goldman</td>
<td>Professor</td>
<td>PHYS</td>
<td>Experimental nonlinear dynamics, Nonlinear dynamics, behavior, robotics, granular media</td>
<td></td>
</tr>
<tr>
<td>Michael Goodisman</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Social Biology, Evolution, Ethics, Genomics, Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>James Gumbart</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Computational Biophysics, Membrane proteins, ribosome, molecular dynamics</td>
<td></td>
</tr>
<tr>
<td>Brian Hammer</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Microbiology, Bacterial genetics, signal transduction, small RNAs, Vibrio biology, biofilms</td>
<td></td>
</tr>
<tr>
<td>Mark Hay</td>
<td>Professor</td>
<td>SOBS</td>
<td>Community Ecology, community ecology, chemical ecology, marine and aquatic ecology</td>
<td></td>
</tr>
<tr>
<td>Christine Heitsch</td>
<td>Professor</td>
<td>MATH</td>
<td>Discrete Mathematics, Discrete mathematical biology, RNA secondary structure, combinatorics</td>
<td></td>
</tr>
<tr>
<td>Christian Houdre</td>
<td>Professor</td>
<td>MATH</td>
<td>Probability Theory and Statistics, Probability theory and applications, aspects of mathematical finance, bioinformatics and statistics</td>
<td></td>
</tr>
<tr>
<td>David Hu</td>
<td>Professor</td>
<td>SOBS & ME</td>
<td>Fluid Dynamics, Biofluidics, nonlinear dynamics, locomotion, behavior</td>
<td></td>
</tr>
<tr>
<td>Nicholas Hud</td>
<td>Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry, Nucleic acid structure, function and evolution.</td>
<td></td>
</tr>
<tr>
<td>Takamitsu Ito</td>
<td>Associate Professor</td>
<td>EAS</td>
<td>Oceanography, Computational modeling of climate and biogeochemical processes</td>
<td></td>
</tr>
<tr>
<td>Lin Jiang</td>
<td>Professor</td>
<td>SOBS</td>
<td>Community Ecology, Biodiversity, community assembly, phylogenetic community ecology</td>
<td></td>
</tr>
<tr>
<td>Lynn Kamerlin</td>
<td>Professor</td>
<td>CHEM</td>
<td>Computational Biology, computational biology, computational chemistry, enhanced sampling approaches, protein evolution, enzyme design</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Field/Major</td>
<td>Research Area</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Harold Kim</td>
<td>Professor</td>
<td>PHYS</td>
<td>Experimental/Computational Biophysics</td>
<td>Molecular biophysics and genetics</td>
</tr>
<tr>
<td>Joel Kostka</td>
<td>Professor</td>
<td>SOBS</td>
<td>Microbial Ecology</td>
<td>Environmental microbiology, microbial ecology, microbiomes, bioremediation, climate change</td>
</tr>
<tr>
<td>Julia Kubanek</td>
<td>Professor</td>
<td>SOBS & CHEM</td>
<td>Chemical Biology</td>
<td>Chemical ecology; chemical signaling; natural products chemistry; metabolomics; drug discovery</td>
</tr>
<tr>
<td>Rachel Kuske</td>
<td>Professor</td>
<td>MATH</td>
<td>Stochastic Nonlinear Dynamics</td>
<td>Stochastic nonlinear dynamics; mathematical neuroscience, biochemical reactions, nonlinear transitions, environmental dynamics</td>
</tr>
<tr>
<td>Joe Lachance</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Population Genetics</td>
<td>Darwinian medicine, evolutionary genomics, human genetics, molecular evolution, theoretical population genetics</td>
</tr>
<tr>
<td>Raquel Lieberman</td>
<td>Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry</td>
<td>Membrane proteins, protein misfolding, chemical biology, macromolecular crystallography</td>
</tr>
<tr>
<td>Jean Lynch-Stieglitz</td>
<td>Professor</td>
<td>EAS</td>
<td>Oceanography</td>
<td>Ocean circulation and climate, isotope geochemistry</td>
</tr>
<tr>
<td>Elisabetta Matsumoto</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Geometry of Materials</td>
<td>Soft matter physics, geometry, mechanics, soft materials, applied mathematics</td>
</tr>
<tr>
<td>Patrick McGrath</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Personal Genetics</td>
<td>Quantitative Genetics, Behavior, GPCR-ligand binding, Epistasis</td>
</tr>
<tr>
<td>Jenny McGuire</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Spatial Ecology and Paleontology</td>
<td>Spatial ecology, paleontology, climate change, ecological modeling, terrestrial systems</td>
</tr>
<tr>
<td>Andrew McShan</td>
<td>Assistant Professor</td>
<td>CHEM</td>
<td>Protein Structure/Function</td>
<td>Protein Structure/Function, Immunology, De Novo Protein Design/Engineering, NMR Spectroscopy, Biophysics</td>
</tr>
<tr>
<td>Farzaneh Najafi</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Neuroscience</td>
<td>Systems, behavioral & computational neuroscience; Cognition, perception & sensorimotor learning; Predictive processing & error detection; Brain regions interactions, Cell-type specific population coding</td>
</tr>
<tr>
<td>Richard Nichols</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Motor control, spinal cord physiology, biomechanics</td>
</tr>
<tr>
<td>Shuyi Nie</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Cellular Biology</td>
<td>Cellular mechanics, cytoskeletal regulation, cell-matrix interactions</td>
</tr>
<tr>
<td>Annalise Paaby</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Evolutionary Biology</td>
<td>Genomics, quantitative genetics, experimental evolutionary biology</td>
</tr>
<tr>
<td>Boris Prilutski</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Sensory control of locomotion, peripheral nerve injury, osseointegrated limb prostheses, artificial sensory feedback, neuromechanical modeling</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>School</td>
<td>Major</td>
<td>Research Areas</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chris Reinhardt</td>
<td>Assistant Professor</td>
<td>EAS</td>
<td>Biogeochemistry</td>
<td>Biogeochemistry, Planetary Science, Paleoclimatology</td>
</tr>
<tr>
<td>Zeb Rocklin</td>
<td>Assistant Professor</td>
<td>PHYS</td>
<td>Structure and motion of soft materials</td>
<td>How shape and mechanical interactions inform function and locomotion in living systems</td>
</tr>
<tr>
<td>Greg Sawicki</td>
<td>Associate Professor</td>
<td>SOBS & ME</td>
<td>Human Physiology of Wearable Robotics</td>
<td>Terrestrial Locomotion, Neuromechanics, Wearable Robotics, Human Augmentation, Elastic Mechanisms</td>
</tr>
<tr>
<td>Eric Schumacher</td>
<td>Professor</td>
<td>PSYC</td>
<td>Cognitive Control</td>
<td>Attention, Cognitive Control, Magnetic Resonance Imaging, Memory</td>
</tr>
<tr>
<td>Jeffrey Skolnick</td>
<td>Professor</td>
<td>SOBS</td>
<td>Systems Biology</td>
<td>Computational Systems Biology, Bioinformatics, Drug Discovery, Protein Structure Prediction</td>
</tr>
<tr>
<td>Simon Sponberg</td>
<td>Associate Professor</td>
<td>SOBS & PHYS</td>
<td>Experimental Biophysics</td>
<td>Neuromechanics, dynamics of locomotion, multiscale physics of muscle</td>
</tr>
<tr>
<td>Alberto Stolfi</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Developmental Neurobiology</td>
<td>Developmental biology, neuroscience, cell biology, gene regulation, genome engineering</td>
</tr>
<tr>
<td>Todd Streelman</td>
<td>Professor</td>
<td>SOBS</td>
<td>Evolutionary Biology</td>
<td>genomics, development, behavior</td>
</tr>
<tr>
<td>Matthew Torres</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Proteomics</td>
<td>Protein Biology and Biochemistry; Cell Signaling; Mass Spectrometry; Proteomics</td>
</tr>
<tr>
<td>Joshua Weitz</td>
<td>Professor</td>
<td>SOBS</td>
<td>Theoretical Ecology</td>
<td>Viral ecology and evolution, nonlinear dynamics, network science, physics of living systems</td>
</tr>
<tr>
<td>Lewis Wheaton</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Neuromechanics guiding skillful human-object interactions in upper extremity motor control</td>
</tr>
<tr>
<td>Marvin Whiteley</td>
<td>Professor</td>
<td>SOBS</td>
<td>Microbial Communities</td>
<td>Microbiology, genomics, infectious disease, antimicrobial resistance, sociomicrobiology</td>
</tr>
<tr>
<td>Kurt Wiesenfeld</td>
<td>Professor</td>
<td>PHYS</td>
<td>Nonlinear Dynamics</td>
<td>Theoretical modeling of nonlinear and stochastic systems</td>
</tr>
<tr>
<td>Loren Williams</td>
<td>Professor</td>
<td>CHEM</td>
<td>Evolution and Chemical Biology</td>
<td>Origins and Evolution of the Ribosome</td>
</tr>
<tr>
<td>Peter Yunker</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Soft Matter Physics</td>
<td>Mechanics of hierarchical materials, biomechanics, biomaterials, cell packings</td>
</tr>
</tbody>
</table>

Appendix B. Course Listings

The following lists courses eligible for inclusion in a Program of Study. Note that course syllabi are maintained and updated by Professors on a regular basis. Please check with the individual home school for more information. All courses are 3 credit hours unless otherwise noted. Course times and locations are subject to change.

Core Introductory Courses

All of these courses are required for students in the program. Foundations in Quantitative Biosciences will be offered every fall semester. The fall section of BIOL 8801 will include seminars from current QBioS faculty. The spring section of BIOL 8801 will allow students to attend existing seminar courses of their choosing, related to Quantitative Biosciences.

CORE1. BIOL/PHYS 6750 Foundations of Quantitative Biosciences (4 hours)
Quantitative Models in the Biosciences (3 hours)

The following courses satisfy the requirement that students take a single course involving the direct application of quantitative methods to the biosciences. All courses are 3 credit hours, including problem sets, involving mathematical and computational methods. Please note that any courses approved to fulfill Quantitative Models in the Biosciences may instead be used to fulfill Quantitative Modeling Core requirements. Approved classes for Bio Modeling:

- BIOL 7111 Molecular Evolution
- BIOL/BMED 7610 Quantitative Neuroscience
- BIOL 6422 Theoretical Ecology
- BMED 4477 Biological Networks and Genomics
- BMED 6743 Tissue Mechanics
- BMED 6790 Information Processing Models in Neural Systems
- BMED 8813 Computational Neuromechanics of Movement
- CHEM 6571 Enzymology and Metabolism
- CSE 6301 Algorithms - Bioinformatics & Comp Biology
- EAS 6122 Global Biogeochemical Cycles
- EAS 6490 Advanced Environmental Analysis
- ISYE 6404 Nonparametric Statistics
- MATH 6705 Modeling and Dynamics
- PHYS 6250 Biophysics

Bioscience Electives leverage pre-existing courses in CoS (6 hours).

Committee can grant permission to take additional courses satisfying these requirements.

Molecular and Cellular Systems Courses

- MCS1. BIOL 6608 Prokaryotic Molecular Genetics
- MCS2. BIOL 7110/ CHEM 8901 Macromolecular modeling (4 hours)
- MCS3. BIOL 7668 Eukaryotic Molecular Genetics
- MCS4. CHEM 6572 Macromolecular structure
- MCS5. CHEM 6573 Molecular biochemistry
- MCS6. CHEM 6582 Biophysical chemistry
- MCS7. PHYS 8803 Biophysics

Chemistry of Biological Systems Courses

- CHEB1. BIOL 6418 Microbial Physiology
- CHEB2. BIOL 6611 Advanced Microbial Physiology
- CHEB3. CHEM 6501 Biochemistry I
- CHEB4. CHEM 6502 Biochemistry II
- CHEB5. CHEM 6571 Enzymology & Metabolism
- CHEB6. CHEM 6582 Biophysical Chemistry
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEB7</td>
<td>CHEM/BIOL 6756 Signaling Molecules</td>
</tr>
</tbody>
</table>

Physiology and Behavior Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPH1</td>
<td>APPH 6212</td>
<td>Systems Physiology II: Physiology of Neuromotor Tissues</td>
</tr>
<tr>
<td>BPH2</td>
<td>APPH 6213</td>
<td>Systems Physiology III: Integrated Systems and Adaptation</td>
</tr>
<tr>
<td>BPH3</td>
<td>APPH 6231</td>
<td>Human Motor Control</td>
</tr>
<tr>
<td>BPH4</td>
<td>APPH 6236</td>
<td>Neuromuscular Physiology</td>
</tr>
<tr>
<td>BPH5</td>
<td>APPH 6400</td>
<td>Human Neuroanatomy</td>
</tr>
<tr>
<td>BPH6</td>
<td>APPH 6600</td>
<td>Muscle Structure & Plasticity</td>
</tr>
<tr>
<td>BPH7</td>
<td>BIOL 6570</td>
<td>Immunology and Immunochemistry</td>
</tr>
<tr>
<td>BPH8</td>
<td>BIOL 6626</td>
<td>Animal Physiology</td>
</tr>
<tr>
<td>BPH9</td>
<td>PSYC 6011</td>
<td>Cognitive Psychology</td>
</tr>
</tbody>
</table>

Ecology Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO1</td>
<td>BIOL 6410</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>ECO2</td>
<td>BIOL 6417</td>
<td>Marine Ecology</td>
</tr>
<tr>
<td>ECO3</td>
<td>BIOL 6422</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>ECO4</td>
<td>BIOL 6620</td>
<td>Aquatic Chemical Ecology</td>
</tr>
<tr>
<td>ECO5</td>
<td>BIOL 8802</td>
<td>Special Topics in Community Ecology (2 hours)</td>
</tr>
<tr>
<td>ECO6</td>
<td>BIOL 8803</td>
<td>Environmental Microbial Genomics</td>
</tr>
<tr>
<td>ECO7</td>
<td>BIOL 8803</td>
<td>Microbial Symbiosis</td>
</tr>
</tbody>
</table>

Evolution Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVO1</td>
<td>BIOL 7111</td>
<td>Molecular Evolution</td>
</tr>
<tr>
<td>EVO2</td>
<td>BIOL 6480</td>
<td>Developmental Biology (2 hours)</td>
</tr>
<tr>
<td>EVO3</td>
<td>BIOL 4545</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>EVO4</td>
<td>BIOL 6600</td>
<td>Evolution</td>
</tr>
<tr>
<td>EVO5</td>
<td>BIOL 6720</td>
<td>Environmental Microbial Genomics</td>
</tr>
<tr>
<td>EVO6</td>
<td>BIOL 7210</td>
<td>Computational Genomics</td>
</tr>
</tbody>
</table>

Earth Systems Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1</td>
<td>EAS 6122</td>
<td>Biogeochemical Cycles</td>
</tr>
<tr>
<td>ES2</td>
<td>EAS 6130</td>
<td>Earth System Modeling</td>
</tr>
<tr>
<td>ES3</td>
<td>EAS 6136</td>
<td>Paleoclimatology & Paleoceanography</td>
</tr>
<tr>
<td>ES4</td>
<td>EAS 6490</td>
<td>Advanced Environmental Data Analysis</td>
</tr>
<tr>
<td>ES5</td>
<td>BIOL 6410</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>ES6</td>
<td>BIOL 6221</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>ES7</td>
<td>BIOL 6765/EAS6765</td>
<td>Geomicrobiology</td>
</tr>
</tbody>
</table>

Quantitative Modeling courses (9 hours)

The following courses satisfy the requirement that students take a course involving rigorous quantitative methods and models. Any MATH 6xxx, 7xxx or 8xxx course is eligible for this requirement, as are many courses in the Colleges of Science, Computing, and Engineering. Please contact the QBioS Director for approval of courses not listed here:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 6225</td>
<td>Biostatistics</td>
</tr>
</tbody>
</table>
BMED 6780 Medical Image Processing
CHEM 6481 Statistical Mechanics
CHEM 6573 Molecular Biochemistry
CHEM 6755 Theoretical Chemistry of Polymers
CHEM 8843 Mathematical Methods for Chemistry
CS 6476 Computer Vision
CS 7280 Network Science
CS 7492 Simulation of Biology
CS 7641 Machine Learning
CSE 6140 Computational Science and Engineering Algorithms
CSE 6220 High Performance Computing
CSE 6242 Data and Visual Analytics
CSE 6301 Algorithms for Bioinformatics and Computational Biology
CSE 6643 Numerical Linear Algebra
CSE 6730 Modeling and Simulation: Fundamentals and Applications
CSE/ISYE 6740 Machine Learning I: Computational Data Analysis
EAS 6502 Introductory Fluid Dynamics
EAS 6672 Ocean Dynamics
EAS 8803 Mathematical Methods for Geophysical Fluid Dynamics
ECE 6550 Linear Systems and Controls
ISYE 6404 Nonparametric Data Analysis
ISYE 6421 Biostatistics
ISYE 6739 Statistical Methods
MATH 6221 Advanced Classical Probability Theory
ME 6601 Introduction to Fluid Mechanics
ME 6705 Mechatronics
PHYS 6107 Statistical Mechanics I
PHYS 6124 Mathematical Methods for Physics
PHYS 6268 Nonlinear Dynamics and Chaos
PHYS 7123 Statistical Mechanics II
PHYS 8823 Geometry and 3D Printing
PHYS 8833 Soft Matter

One course in quantitative modeling may be taken at the 4xxx level. A few representative courses include:
BIOS 4814 Physics of Living Systems
CS 4641 Machine Learning
MATH 4221 Stochastic Processes I
MATH 4280 Introduction to Information Theory
MATH 4541 Dynamics and Bifurcations I
Appendix C. Sample Course Registration
Using Biological Sciences home school as the example

Fall Semester, Year 1
BIOL 6750, Foundations of Quantitative Biosciences = 4 hours
BIOL 8801, Seminar in Quantitative Biosciences = 1 hour
BIOL 8801, Professional Development in QBioS = 1 hour
Quantitative Modeling Course = 3 hours
Biosciences Elective = 3 hours

Your home school may have requirements such as:
- BIOL 8997, 3 audit hours, identifies GTA students
- BIOL 8998, 3 audit hours, identifies GRA students
- CETL 8000 (Sections for Biology, Physics, MATH, etc.), TA training

Spring Semester, Year 1
BIOL 8901, Rotation 1 (Advisor Section) = 3 hours
BIOL 8901, Rotation 2 (Advisor Section) = 3 hours
BIOL 8901 JSW = 1 hour
BIOL 8801 = 1 hour
BIOL 8998 WTZ (or GRA Advisor) = 3 hours
Biosciences Elective = 3 hours
BIOL 8106 (Tools of Science, RCR requirement) = 2 hours

Summer Semester, Year 1
BIOL 8901 or 8902 or 9000 (Advisor Section) = 12 hours
PHIL 6000 = 1 hour (if you haven’t taken PHIL 6000 or BIOL 8106)
Academic Writing Course
- CETL 8721 = 1 hour (native English speakers)
- CETL 8723 = 2 hours (non-native English speakers)
BIOL 8998 WTZ = 3 hours (can reduce to 2 or 1 hour if needed for 16-hour cap)

Appendix D. Expectations of Advisors and Advisees
http://www.catalog.gatech.edu/academics/graduate/expectations/
The relationship between advisor and advisee is central to the experience of students in research-based graduate programs. Both partners in this relationship must contribute for it to succeed. Successful advisor-advisee relationships enhance the careers of both partners. The relationship can take on three forms: advisor-advisee; supervisor-employee; and mentor-mentee. In the best cases, the three forms work together. This document articulates key contributions from each partner to an advisor-advisee relationship that leads to mutual benefit.

The Advisor
Advising graduate students in research-based programs is part of the job expectation for almost all Georgia Tech faculty members. Graduate students build the faculty member’s research record and reputation by contributing to the advisor’s research program. This situation carries an inherent tension. Although the faculty member’s success depends at least in part on the student’s
success, the faculty member may also be responsible to outside sponsors, whose goals may not
directly match those of the student. As an educator, the advisor must always protect the student’s
interests as well as the sponsor’s and his or her own in the research relationship.

The Advisee
The student’s motivation is to earn a degree, which requires the acquisition of scholarly
knowledge and research competence. Participation in the research process is an essential
requirement for all Georgia Tech doctoral students and many master’s degree students. In this
part of their education, the student’s duty is to put a best faith effort into his or her assigned
contribution to the research process. At the same time, Graduate Research Assistants (GRAs) are
also employees who help the advisor and research group meet the requirements of a contract or
grant; while, Graduate Teaching Assistants (GTAs) and Graders are also employees of the school
or program who help the school or program meet their educational requirements. As such they
are employees with a set of job responsibilities that may not align with their research objectives
or those of their advisors. As with the faculty advisor, this situation sets up an inherent tension
between the student’s educational goals and his or her employment responsibilities.

Mutual Expectations
Students Expect from their Advisor:
Respect
• Respect as a person, student, and professional employee
• Recognition and respect for differences in culture, ethnicity, gender, and other
dimensions of diversity
• Commitment of time, effort, and financial support; advising only as many students as
resources permit
• Ability to communicate and express concerns without the fear of retribution
• Understanding of the student’s commitments to course work and GRA/GTA/Grader
responsibilities
Open and clear communications
• Mutually agreed upon expectations for frequency and format of communication
• Clear communication about project timelines, availability and nature of funding, level of
effort and research expectations
• Timely review and feedback on the student’s research and academic progress
• Notification of and appropriate resolution of issues that arise within the program, be they
academic, research, financial or interpersonal in nature
Guidance on research and degree completion
• Guidance on planning and managing research projects from conception to publication
• Reasonable, mutually agreed upon expectations of the time frame necessary to produce
results and complete the dissertation/thesis
• Proper training and resources to successfully complete research projects
• Guidance on professional and ethical standards
Guidance on career
• Advice on advancing professional goals in the direction most desired by the individual
student
• Opportunities to participate in career development activities
• Help building professional networks
Advisors Expect from Advisee:

Respect
- Respect both as professor and person; recognizing the value of their time and their responsibilities within and outside the Institute
- Understanding that mentoring is tailored for each individual student and adjusted for progress in the degree program

Open and clear communications
- Mutually agreed upon expectations for frequency and format of communications
- Regular progress reports including what the student has and has not done, including setbacks
- Reasonable, mutually agreed upon expectations of the time frame necessary to give feedback and review results
- Discussion of difficulties with advisor first, before turning to other means for conflict resolution
- Notification as soon as possible if planning to leave program or advisor sooner than expected

Commitment & Productivity
- Understanding of the expectations of the degree program, advisor and research team, and GRA/GTA/Grader responsibilities
- Learning and progress through the program, with progressively more independence as the student advances
- Commitment and steady effort to make progress towards mutually agreed upon results and deliverables; adhering to timelines and deadlines

Responsibility
- Safe, ethical, and efficient use of resources
- Abiding by professional and safety standards
- Taking feedback seriously and revising in response
- Maintaining good records and documentation that would allow replication of results
- When graduating or leaving the team, leaving behind the organized research materials

Teamwork
- Working well with others; supporting and mentoring others in the team
- Carrying a fair share of the responsibility
- Understanding the common intellectual property principles involved in teamwork
- Meeting deadlines
- Thoughtfully reviewing the work of others, including the advisor

Appendix E. Recommended Steps for Communication of Expectations Between Advisors and Advisees

Based on guidance from the School of Biological Sciences

In order to provide graduate students with the opportunity to correct their course upon receiving constructive criticism and a clear understanding of the timeframe for possible consequences, the following steps are recommended.

Communication about research progress and considerations/alternatives for leaving current laboratory
Graduate students should receive regular feedback and training from their advisors. Thesis advisors ensure that any significant performance concerns are communicated as outlined below. If it is not possible for the advisor-advisee relationship to continue, this must be communicated early enough for the graduate student enough time to consider alternatives and not to be terminated with very short notice.

If in good academic standing, the student should have enough time to potentially find a new thesis advisor before the start of the following semester.

Other options: PhD students may switch to the MS program in their home school. The graduate coordinator will be able to assist with a degree audit and a new projected timeline for the MS.

First step when concerns are identified:

Initiated by the faculty member if a graduate student is not making appropriate progress. Other issues may be duties, working hours, communication, or other expectations not being met. The advisor may or may not be at the point of assigning a grade of “U” (unsatisfactory) for research.

Meeting between research advisor and graduate student:
Advisor: Communicates concerns verbally in a meeting, or in an email followed by a meeting to provide an opportunity for discussion. Expectations are outlined clearly and a reasonable timepoint for correction of path is discussed.

Graduate student: Responds to the feasibility of the plan and is proactive about requesting feedback and constructive criticism on a regular basis.

Written documentation to ensure clarity for both involved parties:
An email summary follow-up by either the advisor or graduate student is highly recommended for clarity and documentation purposes. Concerns that were raised and the solutions/next steps discussed are briefly outlined. The advisor and/or advisee should cc the graduate coordinator and graduate program director.

Second step – official notification

Problems have not been resolved or only partially resolved within the specified timeframe.

Meeting between research advisor and graduate student:
A meeting with the same goal of correcting the situation as outlined under “first steps” is scheduled between the research advisor and the graduate student.

Written documentation with graduate coordinator cc’d (REQUIRED):
The concerns raised during the first meeting, expected progress, and shortcomings at this timepoint are listed. The advisor makes consequences clear (e.g. a “U” grade for research or termination, if the student has already received one “U”). The advisor may provide another opportunity for correction.
The graduate coordinator forwards the information to the graduate program director and the graduate committee. The student is welcome to request a meeting to discuss possible consequences and options as well as receive advice based on the student’s perspective.

Third step – termination in program or in current lab, which may include change of program and/or change of thesis advisor

The most significant problem(s) could not be resolved by the approved deadline. The student has received one “U” for research and is likely to obtain a second “U”.

Notification:
The advisor informs the graduate program director and coordinator and then meets with the student. Written documentation is provided to the student and the graduate office.

General
The graduate student may seek additional advice from a mentor, thesis committee member(s), the graduate coordinator, the graduate program director, and/or the graduate committee. The home school Associate Chair or Chair are good resources as well, should the student not feel comfortable speaking with any of the aforementioned possibilities. At the institute level, the student has the possibility to speak with the Ombuds or the Dean of Students.

Expectation of communication:
Response to emails from graduate coordinators or faculty: within 24-48 hours.

Standing for graduate degrees:
The QBioS program handbook provides details and students are encouraged to discuss concerns with their graduate coordinator and/or faculty mentor.

Misconduct:
Misconduct of any type requires immediate communication with the graduate office instead of the above recommendations.