Table of Contents

A. Introduction ... 3

B. Deadlines and Timelines .. 3
 - **B.1 Major Milestones** ... 3
 - **B.2 Typical Timeline for Completion of a PhD in QBioS** ... 4

C. Degree Requirements ... 5
 - **C.1 Summary of Requirements** .. 5
 - **C.2 Program of Study** .. 5
 - **C.2.1 Core courses** ... 6
 - **C.2.2 Interface minor** .. 6
 - **C.2.3 Rotations** ... 7
 - **C.2.4 Academic Writing Class** .. 7
 - **C.2.5 Approval of Thesis & Advancement to Candidacy** ... 7
 - **C.2.6 Publication Requirement** .. 7
 - **C.2.7 Thesis Defense** ..7

D. PhD Thesis ... 8
 - **D.1 Selecting an Advisor** .. 8
 - **D.2 Committee Formation** .. 8
 - **D.3 Qualifying Exam** .. 9
 - **D.3.1 Written Thesis Proposal** .. 9
 - **D.3.2 Oral Defense of Proposal** ... 9
 - **D.3.3 Procedures for Re-examination of the Proposal** .. 9
 - **D.4 Yearly Thesis Review** .. 9
 - **D.5 Ph.D. Thesis defense** ... 9
 - **D.5.1 Procedures prior to the defense** ... 9
 - **D.5.2 Procedures During the Defense** ... 10

E. Stipend, Duties, Registration & Fees .. 10
 - **E.1 Home School** .. 10
 - **E.2 Financial Support** .. 11
 - **E.3. Assistantship Duties** .. 11
 - **E.4 Registration** ... 12
 - **E.4.1 General Issues** .. 12
 - **E.4.2 Cross-registration** ... 12
 - **E.5 Fees** .. 12
A. Introduction
This document describes Georgia Tech’s Interdisciplinary Graduate Program in Quantitative Biosciences. The program was founded in 2015. This document includes detailed information about the program of study, degree requirements, financial support, administrative matters, facilities, etc. Specific questions should be addressed as needed to the Director of the Program – director@qbios.gatech.edu - and to the administrative support – admin@qbios.gatech.edu. Updates to this handbook will be announced to students & faculty and posted on the QBioS website – http://qbios.gatech.edu.

Director of Program
Joshua S. Weitz, Ph.D., Professor
School of Biological Sciences, Georgia Institute of Technology
director@qbios.gatech.edu

Graduate Committee
Joshua Weitz (Chair, SoBS), Bridgette Barry (CHEM), Sam Brown (SoBS), Young-Hui Chang (SoBS), Jennifer Curtis (PHYS), Christine Heitsch (MATH), Takamitsu Ito (EAS), Harold Kim (PHYS), Patrick McGrath (SoBS)

Administrative Manager
Lisa Redding, School of Biological Sciences, admin@qbios.gatech.edu

Home Schools
Biological Sciences – SOBS
Chemistry and Biochemistry – CHEM
Earth and Atmospheric Sciences – EAS
Mathematics – MATH
Physics - PHYS
Psychology – PSYC

B. Deadlines and Timelines
The timelines represent a typical trajectory and issues of exceptions are dealt with in the appropriate sections of the handbook.

B.1 Major Milestones

<table>
<thead>
<tr>
<th>Time/Years</th>
<th>Milestone</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.5</td>
<td>Core course completion</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>1.0</td>
<td>Selection of thesis advisor</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>1.0</td>
<td>Formation of initial Ph.D. committee</td>
<td>See Program of Study</td>
</tr>
<tr>
<td>2.0</td>
<td>Written proposal and oral defense</td>
<td>See Ph.D. Thesis</td>
</tr>
<tr>
<td>3.5 – 4.5</td>
<td>Thesis approval</td>
<td>Must occur 6 months prior to defense</td>
</tr>
<tr>
<td>5</td>
<td>Thesis Defense (with at least one publication)</td>
<td>Approval form signed by committee must be submitted to the QBioS Office</td>
</tr>
<tr>
<td>Continuous</td>
<td>Yearly Updates</td>
<td>Scheduled by the Student</td>
</tr>
</tbody>
</table>
B.2 Typical Timeline for Completion of a PhD in QBioS

The QBioS program is designed to keep students on track for learning core material and proposing a thesis dissertation in years 1 and 2. Subsequently, the student, advisor and committee collaboratively ensure the development and completion of the thesis in Years 3-5. The five-year schedule of a typical student will involve classes, research and teaching experiences, as below. Detailed information on each component is provided in subsequent sections.

Year 1

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall semester</th>
<th>Spring semester</th>
<th>Summer semester</th>
</tr>
</thead>
</table>
| **Recommended 1st year program** | A1. Foundations in QBioS (4 hrs)
A2. Quantitative Modeling (3 hrs)
A3. Elective in Biosciences (3 hrs)
A4. QBioS Seminar (1 hr)
C. Teaching assistantship (3 hrs, home school) | A1. Quantitative Modeling (3 hrs)
A2. Elective in Biosciences (3 hrs)
A3. QBioS Seminar (1 hr)
A4. RCR training
B. Rotation (6 hrs)
C. Teaching assistantship (3 hrs, home school) | A. Required writing course (2 hrs)
B. Thesis research (12 hrs)
(support expected from GRAs) |
| **Including:**
A – Courses
B – Rotation + research
C – Teaching | | | |
| **Year 2** | A1. Quantitative Modeling (3 hrs)
A2. Elective in Biosciences (3 hrs)
B1. Thesis research (9 hrs)
(support expected from GRAs) | A1. Interface minor (3 hrs)
B1. Thesis research (12 hrs)
B2. Thesis research (12 hrs)
(support expected from GRAs) |
| **Typical 2nd year program** | | | |
| **Including:**
A – Courses
B – Rotation + research
C – Teaching | | | |
| **Years 3-4** – Students should have passed their qualifying exams and will devote near 100% of their time to thesis related research. They are encouraged to take additional classes in consultation with their thesis advisor and committee. |

Year 5

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall semester</th>
<th>Spring semester</th>
<th>Summer semester</th>
</tr>
</thead>
</table>
| **Typical final year program** | B1. Thesis research (12 hrs)
B2. Pre-defense committee meeting with preview of thesis
(support expected from GRAs) | B1. Thesis research (12 hrs)
B2. Publication submitted for review and/or revision.
(support expected from GRAs) | B1. Thesis research (12 hrs)
B2. Thesis defense and public examination
(support expected from GRAs) |
| **Including:**
A – Courses
B – Rotation + research
C – Teaching | | | |
| **Fall semester** | | | |
| **Spring semester** | | | |
| **Summer semester** | | | |
| **Including:**
A – Courses
B – Rotation + research
C – Teaching | | | |
C. Degree Requirements

C.1 Summary of Requirements
The PhD in Quantitative Biosciences is designed to give graduates training in the quantitative
analysis of problems in the biosciences – spanning foundational advances and application to
challenges in human health, energy and the environment. The requirements include
(1) a program of study in core QBioS biosciences and quantitative modeling courses;
(2) a coherent interface Minor course of study;
(3) a minimum of two group rotations in the first year;
(4) an English writing class;
(5) a Thesis Proposal;
(6) acceptance of at least one scientific publication;
(7) a written PhD thesis and a public defense of that thesis.

There is no comprehensive qualifying exam and no foreign language requirement. Georgia Tech
requires that all doctoral students maintain a 3.0 grade point average. With the permission of the
research supervisor and the QBioS Director, PhD students may seek a concurrent MS degree
from another School. If so, the courses taken for the MS may be counted to satisfy the Minor
requirement. During the semester preceding the semester when the PhD degree is expected,
students must submit an Online Application for Graduation to the Registrar. The complete set of
requirements involving credit hours are listed in the following Table. The majority of
coursework should be completed in Years 1-2, with thesis research representing the bulk of
credit hours in Years 3-5:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations in Quantitative Biosciences (1 course)</td>
<td>4</td>
</tr>
<tr>
<td>Seminars in Quantitative Biosciences (2 courses)</td>
<td>2</td>
</tr>
<tr>
<td>Quantitative Modeling core, including a computational-focused class (3 courses)</td>
<td>9</td>
</tr>
<tr>
<td>Bioscience disciplinary electives (2 courses, including one involving the application of quantitative methods to the biosciences)</td>
<td>6</td>
</tr>
<tr>
<td>Scientific interface minor (3 courses, equivalent to Institute approved minor, of which 3 hours must be distinct from courses listed above)</td>
<td>9 (3 new)</td>
</tr>
<tr>
<td>Rotations</td>
<td>6</td>
</tr>
<tr>
<td>Thesis research</td>
<td>15 (minimum)</td>
</tr>
<tr>
<td>Total</td>
<td>25 core course hours</td>
</tr>
<tr>
<td></td>
<td>2 seminar hours</td>
</tr>
<tr>
<td></td>
<td>6 rotation hours</td>
</tr>
<tr>
<td></td>
<td>15 thesis hours</td>
</tr>
</tbody>
</table>

C.2 Program of Study
First-year students are required to take a foundations course, two seminar courses, two modeling
courses and two bioscience courses in their first year. Students are expected to earn course
grades of A, B, or P (pass) in both semesters. One course grade of C is permitted in either the
first or second semester (not both). Students who earn two or more grades of C or any number of
D or F grades may not continue in the Ph.D. program without the explicit permission of the
QBioS Graduate Committee. Incoming Ph.D. students demonstrate their grasp of the core
principles of Quantitative BioScience by taking multiple courses (described below). Note that the
Seminars in Quantitative Biosciences are taken on a pass/fail (P/F) basis. The other core courses
must be taken on a letter grade (LG) basis. Course listings are found in Appendix B but may, in
some instances, also be selected across the Institute’s offerings via permission of the student’s
supervising committee.

C.2.1 Core courses

Core Introductory Courses – All Required
I1. BIOL 8804 Foundations of Quantitative Biosciences (4 hrs)
I2. BIOL 8801 Seminar in Biology – Quantitative Biosciences (1 hr)
I3. BIOL 8801 Seminar in Biology – Quantitative Biosciences (1 hr)

These three courses taken in the first year are taken by all QBioS PhD students. The Foundations
class is organized around the understanding of key advances in the biosciences, one organizing unit
at a time, in which the advances depended critically on quantitative methods and reasoning. The
overall objective of the course is to teach graduate students how to reason quantitatively in the
biosciences given uncertainty in mechanisms, rates and reliability of measurements. The Seminar
classes will enable students to meet, learn and discuss rotating topics representing ongoing
advances in QBioS with Program Faculty.

Quantitative Modeling Core (3 courses):
Students select courses a la carte that involve rigorous quantitative methods and models.

Bioscience Disciplinary Electives (2 courses):
Students select courses a la carte that deepen student understanding of the biosciences in one of
the following areas:
• Chemistry of Biological Systems
• Molecular and Cellular Systems
• Physiology & Behavior
• Ecology
• Evolution
• Earth Systems

Quantitative Models in the Biosciences (1 course):
Students select one course a la carte that satisfies the requirement that students take a course
involving the direct application of quantitative methods to the biosciences. All courses satisfying
this requirement are 3 credit hours, including problem sets, involving mathematical and
computational methods.

C.2.2 Interface minor

Students select three courses that will enhance the thesis and enable the development of breadth
and flexible thinking in the student. This requirement will also serve, in part, to satisfy the
Institute required minor. One of these courses must be in addition to those taken as part of the
core course requirements.
C.2.3 Rotations
Special Problems (BIOL 8901) is two, 3-hour courses arranged with two distinct QBioS program faculty members in the spring semester of the first year. Registration requires the permission of two professors. The Special Problems should be viewed as a serious opportunity to begin Ph.D. research. Students should also register for a Special Problem in the summer of their first year for 12 credit hours. In most cases this course will have a single professor using the special problem designation appropriate to the School of the advisor and the special problem advisor will represent the eventual thesis advisor of the student. However, students are permitted to arrange for up to 2 additional rotations using Special Problems mechanism in the summer of their first year. Selection of a thesis advisor is expected for all students by the end of their first year in the program.

C.2.4 Academic Writing Class
All students must pass a semester-long graduate course in English-language academic writing. For non-native English speakers, the relevant course is CETL 8723 and students should, ideally, take it in the first summer semester. If it is offered in the fall or spring, students can take it then. Non-native speakers may also take ESL-OL01L through the GT Language Institute. This is an online course equivalent to CETL 8723. For native English speakers (or non-native speakers with extremely good English grammar skills) the relevant course is CETL 8721. At this time, the Center for Teaching and Learning plans to offer the 8721 course during summer semesters only. For all students, the writing course must be completed no later than the summer of the 2nd year.

C.2.5 Approval of Thesis & Advancement to Candidacy
By the end of the second summer at Georgia Tech, every QBioS PhD student must seek admission to candidacy by presenting an 8-page Proposal, including 2 additional pages of references to a Thesis Proposal Committee (TPC) composed of their primary research supervisor and at least 3 other Georgia Tech faculty members, including at least 2 members from the QBioS program faculty. Every student is required to defend their Proposal to their TPC in the form of a 30 minute oral presentation followed by an additional 30-60 minutes of questions from the committee. The written Thesis Proposal should contain (1) a review of the literature of their field; (2) a discussion of how the proposed research fits into that field; and (3) a summary of preliminary results. Each TPC member (except for the supervisor) is expected to ask questions designed to probe the students’ understanding of their proposed research. It is the responsibility of the TPC to decide if the student “passes” or “fails” the Thesis Proposal. A student who passes is formally admitted to PhD candidacy. A student who fails must rewrite his/her Thesis Proposal and/or repeat the oral presentation no later than the subsequent semester as directed by their TPC.

C.2.6 Publication Requirement
Some portion of the PhD candidate's research must have been accepted as a “first-author” publication in a refereed scientific journal before the thesis defense. Given differences in fields and author order conventions, here we use the term “first-author” to denote the person primarily (or equally) responsible for conducting the research that led to publication. The term first-author applies to “joint” designations of first-authorships. In fields in which last name ordering is used, the “first-author” requirement is satisfied so long as the student was primarily – whether solely
or jointly – responsible for conducting the research that led to publication. Note that if your work was supported in part by the QBioS program through a program GRA, then you should include an Acknowledgement as such: “This work was supported in part by the Interdisciplinary Graduate Program in Quantitative Biosciences at the Georgia Institute of Technology.”

C.2.7 Thesis Defense
The thesis defense is the capstone of the QBioS PhD – and is described in Section D.

C.3 Graduate Coursework from Other Universities and Programs
Graduate level coursework taken for a Master’s degree (even at another university) may be included in the Ph.D. Program of Study provided that a grade of B or better was earned for these courses. The submitted program of study and course justification should also include a copy of the student’s transcript and a detailed course description and syllabus for each course for which the student wishes to receive credit.

C.4 Honor Code
All participants in QBioS Graduate Program are expected to uphold the Academic Honor Code at all times. The Honor Code is intended to continuously remind students and faculty of the importance of honesty and responsible conduct in their professional lives. It also serves to increase awareness on the part of both students and faculty of the rules regarding academic honesty and the process to be followed if these rules are broken. Since graduate students are involved in research and scholarly activities which occur outside the classroom, the Georgia Tech Academic Honor Code contains a Graduate Addendum to address additional aspects of academic integrity associated with such activities. Graduate students are also encouraged to become familiar with the Institute Policy on Scholarly Misconduct, located at http://www.policylibrary.gatech.edu/faculty-handbook/5.7-policy-responding-allegations-scientific-or-other-scholarly-misconduct.

D. PhD Thesis

D.1 Selecting an Advisor
Students will rotate with two different QBioS faculty members in the spring of their first year, with additional opportunities for up to two more rotations in the summer of their first year. QBioS students should identify a thesis advisor no later than the end of the summer of their first year. Upon mutual agreement, the student and advisor will inform the QBioS graduate committee which will then review and confirm all requests.

D.2 Committee Formation
Students should identify three faculty members, of which two must be members of the QBioS Program Faculty, to serve as part of their Thesis Proposal Committee (TPC). The TPC is responsible for evaluating the proposal and should be constituted in the fall semester of the 2nd year in the program – and hold an initial, advisory meeting with the student. In most cases the TPC members continue to serve as members of the Thesis Reading Committee after the student passes their qualifying exam.
D.3 Qualifying Exam

D.3.1 Written Thesis Proposal
By the end of the second summer at Georgia Tech, every QBioS PhD student must seek admission to candidacy by presenting an 8-page Proposal, including 2 additional pages of references to a Thesis Proposal Committee (TPC) composed of their primary research supervisor and at least two other Georgia Tech faculty members, including at least two members from the QBioS program faculty. Criterion for evaluating the quality of the proposal will be distributed by the TPC to the student in advance of the proposal development and submission.

D.3.2 Oral Defense of Proposal
Every student is required to defend their Written Thesis Proposal to their TPC in the form of a 30 minute oral presentation followed by an additional 30-60 minutes of questions from the committee. The oral defense should take place no later than the end of the second summer. The written Thesis Proposal should contain (1) a review of the literature of their field; (2) a discussion of how the proposed research fits into that field; and (3) a summary of preliminary results. Each TPC member (except for the supervisor) is expected to ask questions designed to probe the students’ understanding of their proposed research. It is the responsibility of the TPC to decide if the student “passes” or “fails” the Thesis Proposal – judged comprehensively based on the quality of the written and oral components. A student who passes is formally admitted to PhD candidacy.

D.3.3 Procedures for Re-examination of the Proposal
A student who fails must rewrite his/her Thesis Proposal and/or repeat the oral presentation as directed by their TPC. The re-examination must occur no later than the semester subsequent to the initial exam. A student who fails his/her examination twice will be removed from the program.

D.4 Yearly Thesis Review
The student should meet with his/her Thesis Reading Committee on at least a yearly basis to review research progress. Students are required to complete an annual progress update that is due at the start of each subsequent fall semester or upon graduating and will be distributed electronically.

D.5 Ph.D. Thesis defense

D.5.1 Procedures prior to the defense
Institute-Required Forms: To complete its records for each Ph.D. student, the Registrar’s Office requires an Online Application for Graduation, which must be submitted to the Registrar’s Office prior to the student’s final semester. The exact date is listed in the official school calendar by semester.

Enrollment Status: The student must be registered during the semester in which the final presentation occurs. A student must also be registered the semester he/she plans to graduate unless an enrollment waiver is requested and approved. An enrollment waiver will not be
approved if the Thesis has not been accepted by the Graduate Studies Office by the published deadline.

Thesis Documents: The Ph.D. proposal presentation consists of (1) a proposal document and (2) an oral presentation and examination evaluated by the Ph.D. Thesis Reading Committee. The proposal document must be received by the members of the thesis committee at least two full weeks prior to the oral presentation and examination. The student should (3) contact each committee member to arrange the delivery of the proposal in either hard-copy or electronic format.

Scheduling: The student must poll the committee and establish a date and time for the presentation, reserve a room and prepare an announcement of the presentation. The student is responsible for reserving the room and obtaining the necessary audio visual equipment prior to the oral presentation. Some faculty have extremely busy schedules, and this step should be done at least 6 weeks in advance to ensure faculty availability.

D.5.2 Procedures During the Defense
The thesis defense includes an oral presentation of the findings of the thesis, questions from the audience and the committee, and a closed Q&A with the student and the thesis committee. The Thesis Committee includes the research supervisor and at least 2 other members of the QBioS Program Faculty, representing at least 2 Schools at Georgia Tech. There should be 5 members of the Thesis Committee in total. After successful public defense of the Thesis, the candidate prepares a final manuscript incorporating the modifications required by the Thesis Committee. After obtaining approval signatures from the Thesis Committee and the Director of QBioS, the candidate should follow the electronic submission, printing and distribution specified online.

E. Stipend, Duties, Registration & Fees

E.1 Home School
The QBioS Graduate Program is one of Georgia Tech’s few interdisciplinary graduate programs. It is independent of any particular school or department and is supported by the College of Sciences. Participating academic units are called Home Schools.

The participating Home Schools in QBIO are the Schools of Biological Sciences (SoBS), Chemistry and Biochemistry (CHEM), Earth and Atmospheric Sciences (EAS), Mathematics (MATH), Physics (PHYS) and Psychology (PSYC).

Home Schools admit students to QBioS and set administrative policies for students in that Home School (such as stipend policies). Home Schools do not administer degree requirements, such as thesis proposal evaluation, approval of programs of study, and procedures related to dissertation committee selection and defense. Home Schools cannot alter any programmatic requirements.

The Home School of the student, as well as the student’s research advisor (if a different Home School), also set policies regarding laboratory and research infrastructure: examples include office space, mail boxes, faxes, photocopying, travel rules, vacation policies, etc. The Home School is also responsible for the administration of tuition waivers.
Faculty may apply for QBioS membership if they have at least a 25% FTE appointment in any of the participating Schools. Program faculty may advise QBioS students in any home school.

E.2 Financial Support
All issues of financial support are a matter between the Home School and the student. Please follow your Home School’s policies regarding forms and deadlines to avoid any discontinuation of support. This is especially important if your Home School is not that of your advisor.

Typically, students are supported via a GTA in the fall and spring of their first year and via a GRA in the summer of their first year. Subsequent support is provided by a combination of GRAs, GTAs and fellowships. Three types of financial aid are available to qualified graduate students:

1. **GRA/GTAs (Graduate Research Assistantships/Graduate Teaching Assistantships).** These are awarded on the basis of academic potential and performance and not on the basis of need. They are awarded either at the time of your offer of admission or by a faculty member wishing to support you in his/her laboratory as a GRA. Please note: If you were not admitted with financial support, the last day a student can be placed on a GRA for the semester is the last day of the first week of classes. After this date, even if a professor wishes to financially support a student, the student cannot be supported as a GRA until the following semester. In this interim period, the student may be supported as an hourly employee, but will not be eligible for a tuition waiver and will have to pay all relevant fees and tuition.

2. **External Fellowships.** Students are highly encouraged to apply for external fellowships such as NSF, NDSEG, Department of Energy, Department of Homeland Security, and NIH NRSAs. Most of these are only available to US citizens and permanent residents. A web page describing many of these opportunities is located at http://www.finaid.gatech.edu/graduate/.

3. **Out-of-state Tuition Waivers.** Waivers are only awarded to Ph.D. students based on a nomination by the student’s Home School. Out-of-state Tuition Waivers are not guaranteed to students, and are typically reserved for students supported by externally funded fellowships and training grants. GRAs and GTAs do not need to obtain an out of state tuition waiver; tuition is covered by virtue of being a GRA/GTA.

E.3. **Assistantship Duties**
Typically, a GTA works for the Home School for 9-12 hours/week. A student may be asked to (a) supervise undergraduate laboratories, (b) proctor examinations, (c) grade homework, or (d) tutor undergraduates. A GRA works as part of an individual professor’s research team. A student's duties are to conduct research toward a student's PhD. GRA salaries are paid from the research grants of individual professors. Therefore, once a student is committed to a professor for a student's PhD, a student must ask him/her before registering each semester to learn whether he or she will be a GRA or a GTA for the coming semester.
E.4 Registration

E.4.1 General Issues
Not long after mid-term every semester, Phase I registration opens for the next semester. It lasts two weeks. Phase II registration opens just before each semester begins. It also lasts two weeks.

Plan to register during Phase I. Note: even if a student registers during Phase I, he/she does not need to pay the registration fee until the beginning of Phase II. During Phase I in the spring, students can register for both summer and fall classes. The registration web site is https://oscar.gatech.edu. There is no reprieve for forgetting to register – you will not be eligible to be paid as a GRA and will be responsible for paying all tuition and fees for the following semester. The Registrar is strict with respect to fee payment and registration deadlines. Registration dates are available online: http://www.registrar.gatech.edu/registration/calendar.php. See Appendix C for sample registration during Year 1.

E.4.2 Cross-registration
Graduate students may cross-register for courses at other Atlanta-area universities, such as Emory University and Georgia State University, via the Atlanta Regional Consortium for Higher Education (ARCHE). You must be a full-time student in good academic standing at the time of application in order to cross-enroll. The deadline for cross-enrollment is part-way through the semester preceding he intended enrollment semester, so plan ahead. More information is available online at http://www.registrar.gatech.edu/registration/cross/index.php. You should receive a notification by email if your cross-enrollment request is approved. Courses for MS students must be transferrable; PhD students can simply apply such courses to their Program of Study subject to approval of the Graduate Committee.

E.5 Fees
GTA and GRA students must pay mandatory student fees during every semester of enrollment (fall, spring, and summer). MS and PhD students without any financial support pay both tuition and mandatory student fees for every semester of enrollment. The tuition and fees for students not on GTA or GRA vary based on the number of hours registered, as well as the student’s residency status (Georgia resident or non-resident). The complete fee schedule is posted at http://www.bursar.gatech.edu. Students can pay on-line or in person at the Office of the Bursar. Pay student fees on time to avoid late charges!

F. Facilities

F.1 E-Mail & Telephones
The Program and the Institute communicates with students through an e-mail account that is assigned to each student. It is essential that a student activate this account and check it every business day. Students can do this at http://webmail.mail.gatech.edu. We do not provide phones in student offices. Students may use the phones in the QBioS program office for emergency outgoing calls. However, the front office does not pass on telephone messages to students. Students actively engaged in research may have access to phones in the research space of their advisors. If so, outgoing calls must be restricted to professional matters.
F.2 Mailboxes
Students have personal mailboxes in Cherry Emerson – please check these on a regular basis. The mailing address is:
School of Biological Sciences, Georgia Institute of Technology Atlanta, GA 30332-0230

F.3 Office Space
In their first year, students will be assigned a desk in a shared office space in the Cherry Emerson building with other first-year QBioS students. At the end of their first year, they will move to a desk given to them by their thesis advisor.

F.4 Room Access
A first year student's Buzz Card opens the exterior doors of the Cherry Emerson building. A student's key or Buzz Card opens a student's office, the mailroom, the computer cluster (S021), and two rooms on the second floor (common room, library). Books and journals from the library can be removed for photocopying only.

F.5 Travel Funds
The Director maintains a small fund to support graduate student travel to professional conferences. A student may apply for these funds once during his/her time at Georgia Tech. To apply, send a brief letter of request, endorsed by the student's research supervisor, to the Director stating what a student intends to do and the projected cost. The Graduate Student Senate also has a fund to support professional travel. Apply directly to them: http://sga.gatech.edu/g/conference-fund/.

F.6 Security
Our campus is in an urban environment. Take special care if walking in the adjacent neighborhoods after dark. Security on the campus and inside buildings is very good. We need students’ help to keep it that way. All persons who have reason to be in a building at night or on weekends have a key. Therefore, there is never any reason to let a person in. Never prop open a door to allow people to enter. Always lock office doors. Anyone who steals the private property of another person (or of the School itself) will be dismissed from the program. If a student ever finds unauthorized persons in a GT building, open doors, or unusual activities, report them to the campus Police (Ext 4-2500 or 404-894-2500) immediately.

G. Administrative Issues

G.1 Program Management
QBioS will be led by a program director with day-to-day operations handled by a program manager. The following sections describe the administrative structure along with responsibilities.

Program Director (PD)
The PD is responsible for overall program administration and policy directions. The founding PD for the PhD in QBioS is Prof. Joshua S. Weitz (School of Biological Sciences) who can be reached regarding QBioS matters at: director@qbios.gatech.edu.
Program Manager (PM)
The PM handles most routine administrative aspects of the program (such as anything involving submitting a form or requesting approval) and coordinates admissions with the Home Schools. The current program manager is Lisa Redding and can be reached regarding QBioS matters at: admin@qbios.gatech.edu.

General Faculty
This includes all faculty who participate in the QBioS program. They approve all general policies and meet regularly each semester. Faculty meetings have a quorum requirement for voting: a quorum is defined as 33% of the number of faculty actively participating in the program. See Appendix A for a current listing of QBioS program faculty.

Graduate Studies Committee
The Graduate Studies Committee oversees the operation of QBioS. The committee has responsibility for all graduate-level degree requirements, approval of PhD Programs of Study forms in which transfer credit from another institution is requested and oversight of the Ph.D. thesis proposal process. A student may petition the Graduate Studies Committee regarding academic issues by submitting a petition detailing his/her request to the QBioS Program Chair. The committee meets monthly during the academic year. Members of this committee are appointed by the QBioS Program Director, who chairs the committee. The current members of the graduate studies committee are:

- Joshua Weitz (Chair, SoBS), Bridgette Barry (CHEM), Sam Brown (SoBS), Young-Hui Chang (SoBS), Jennifer Curtis (PHYS), Christine Heitsch (MATH), Takamitsu Ito (EAS), Harold Kim (PHYS), Patrick McGrath (SoBS)

G.2 Counseling Center
Graduate school is a life changing event, and the path is not always easy. The Counseling Center at Georgia Tech provides individual and group counseling, workshops on such topics as stress management and study skills, career counseling and psychological testing. The Center is staffed by licensed psychologists, counselors, and marriage and family therapists, as well as counselors-in-training. The Counseling Center can be reached at 404-894-2935, or you can learn more online at http://www.counseling.gatech.edu.

G.3 Transferring into the QBioS PhD program
Students seeking to transfer from their current major into the QBioS Graduate program will need to first meet the minimum GPA requirement of 3.0 and submit a narrative explaining why they wish to change to the QBioS major. Secondly, students will need a letter of endorsement from their current thesis advisor. Finally, students must not have failed their current major’s qualifying exam. Students who have failed their current major’s qualifying exam will not be considered for transfer into the QBioS graduate program. If the above conditions are satisfied, students will need to submit a change of major form that has been signed by the home school authorizing the change of major to the QBioS graduate office. These documents are then reviewed by the Chair of the QBioS graduate program as well as the QBioS Graduate Studies Committee for final approval. Students will then be notified whether they will be allowed to transfer into the QBioS program.
G.4 Changing Home Schools
QBioS allows students in any Home School to pair with advisors in any Home School. Students are bound by the administrative policies of the Home School of the student. In some cases, students may wish to change their home school; the most common scenario is to change into the Home School of the advisor. Changing Home Schools requires the consent of the student’s thesis advisor as well as the graduate office of the proposed Home School. A Change of Major form is used to facilitate this change. Contact the administrative manager of QBioS for more information: admin@qbios.gatech.edu.

G.5 Changing Thesis Advisors
A student seeking a change of advisor must first discuss the matter with his/her current advisor and satisfactorily complete all GRA and research obligations. The Program Chair must be involved in these discussions to ensure that all parties’ needs and obligations are met. Upon satisfactory completion of these obligations the current advisor will then “release” the student by signing a “Change of Advisor” form. This form is then submitted to the QBioS graduate office for approval.
Appendix A. Program Faculty

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Rank</th>
<th>Home School</th>
<th>Academic Discipline</th>
<th>Area of Specialization (up to 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed Balog</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Skeletal and Cardiac Muscle Excitation-Contraction Coupling, Ryanodine Receptors</td>
</tr>
<tr>
<td>Bridgette Barry</td>
<td>Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry</td>
<td>Mechanisms of electron and proton transfer, photosynthesis, DNA synthesis, biomimetics, spectroscopy</td>
</tr>
<tr>
<td>Annalisa Bracco</td>
<td>Professor</td>
<td>EAS</td>
<td>Physical oceanography and climate dynamics</td>
<td>Geophysical fluid dynamics, transport and mixing in the ocean, bio-physical interactions in the ocean, climate dynamics, modeling</td>
</tr>
<tr>
<td>Sam Brown</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Evolutionary biology</td>
<td>Social evolution, mathematical biology, quorum sensing, virulence, experimental microbiology</td>
</tr>
<tr>
<td>Leonid Bunimovich</td>
<td>Regents' Professor</td>
<td>MATH</td>
<td>Mathematical Biology&Ecology</td>
<td>Dynamical networks, Dynamical and Stochastic Systems</td>
</tr>
<tr>
<td>Young-Hui Chang</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Locomotion, neuromechanics, motor control, neurophysiology</td>
</tr>
<tr>
<td>Jennifer Curtis</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Biophysics</td>
<td>Cell mechanics, molecular biophysics, bionanotech, optical manipulation</td>
</tr>
<tr>
<td>Stephen Diggle</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Microbiology</td>
<td>Social evolution, quorum sensing, biofilms, infection, antimicrobial resistance</td>
</tr>
<tr>
<td>Audrey Duarte</td>
<td>Associate Professor</td>
<td>PSYC</td>
<td>Cognitive Neuroscience</td>
<td>Memory, aging, fMRI, EEG</td>
</tr>
<tr>
<td>Flavio Fenton</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Computational/Experimental Biophysics</td>
<td>Complex systems, pattern formations, physics of living systems</td>
</tr>
<tr>
<td>Neha Garg</td>
<td>Assistant Professor</td>
<td>CHEM</td>
<td>Human Microbiome</td>
<td>Metabolomics, Microbial Imaging Mass Spectrometry, Natural Product Biosynthesis, Chemical Biology, Biochemistry</td>
</tr>
<tr>
<td>Greg Gibson</td>
<td>Professor</td>
<td>SOBS</td>
<td>Integrative genomics</td>
<td>genetics of gene expression, predictive health, malaria systems biology</td>
</tr>
<tr>
<td>Jennifer Glass</td>
<td>Assistant Professor</td>
<td>EAS</td>
<td>Biogeochemistry</td>
<td>Geochemistry, environmental microbiology, greenhouse gas cycling</td>
</tr>
<tr>
<td>Daniel Goldman</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Experimental nonlinear dynamics</td>
<td>Nonlinear dynamics, behavior, robotics, granular media</td>
</tr>
<tr>
<td>Michael Goodisman</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Social Biology</td>
<td>Evolution, Ethics, Genomics, Animal Behavior</td>
</tr>
<tr>
<td>James Gumbart</td>
<td>Assistant Professor</td>
<td>PHYS</td>
<td>Computational Biophysics</td>
<td>Membrane proteins, ribosome, molecular dynamics</td>
</tr>
<tr>
<td>Brian Hammer</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Microbiology</td>
<td>Bacterial genetics, signal transduction, small RNAs, Vibrio biology, biofilms</td>
</tr>
<tr>
<td>Mark Hay</td>
<td>Professor</td>
<td>SOBS</td>
<td>Community Ecology</td>
<td>community ecology, chemical ecology, marine and aquatic ecology</td>
</tr>
<tr>
<td>Christine Heitsch</td>
<td>Professor</td>
<td>MATH</td>
<td>Discrete Mathematics</td>
<td>Discrete mathematical biology, RNA secondary structure, combinatorics</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Research Area</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Christian Houdre</td>
<td>Professor</td>
<td>MATH</td>
<td>Probability Theory and Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Probability theory and applications, aspects of mathematical finance, bioinformatics and statistics</td>
<td></td>
</tr>
<tr>
<td>David Hu</td>
<td>Associate Professor</td>
<td>SOBS & ME</td>
<td>Fluid Dynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biofluidics, nonlinear dynamics, locomotion, behavior</td>
<td></td>
</tr>
<tr>
<td>Nicholas Hud</td>
<td>Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nucleic acid structure, function and evolution.</td>
<td></td>
</tr>
<tr>
<td>Takamitsu Ito</td>
<td>Associate Professor</td>
<td>EAS</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Computational modeling of climate and biogeochemical processes</td>
<td></td>
</tr>
<tr>
<td>Lin Jiang</td>
<td>Professor</td>
<td>SOBS</td>
<td>Community Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biodiversity, community assembly, phylogenetic community ecology</td>
<td></td>
</tr>
<tr>
<td>Wendy Kelly</td>
<td>Associate Professor</td>
<td>CHEM</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chemical biology, natural products chemistry, natural products biosynthesis, biochemistry, drug discovery</td>
<td></td>
</tr>
<tr>
<td>Harold Kim</td>
<td>Associate Professor</td>
<td>PHYS</td>
<td>Experimental/Computational Biophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Molecular biophysics and genetics</td>
<td></td>
</tr>
<tr>
<td>Joel Kostka</td>
<td>Professor</td>
<td>SOBS</td>
<td>Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental microbiology, microbial ecology, microbiomes, bioremediation, climate change</td>
<td></td>
</tr>
<tr>
<td>Julia Kubanek</td>
<td>Professor</td>
<td>SOBS & CHEM</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chemical ecology; chemical signaling; natural products chemistry; metabolomics; drug discovery</td>
<td></td>
</tr>
<tr>
<td>Rachel Kuske</td>
<td>Professor</td>
<td>MATH</td>
<td>Stochastic Nonlinear Dynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stochastic nonlinear dynamics; mathematical neuroscience, biochemical reactions, nonlinear transitions, environmental dynamics</td>
<td></td>
</tr>
<tr>
<td>Joe Lachance</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Population Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Darwinian medicine, evolutionary genomics, human genetics, molecular evolution, theoretical population genetics</td>
<td></td>
</tr>
<tr>
<td>Raquel Lieberman</td>
<td>Associate Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Membrane proteins, protein misfolding, chemical biology, macromolecular crystallography</td>
<td></td>
</tr>
<tr>
<td>Emanuele Di Lorenzo</td>
<td>Professor</td>
<td>EAS</td>
<td>Ocean and Climate Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modeling Geofluid Dynamics, Marine Ecosystem Dynamics, Climate Variability & Change, Inverse and Statistical Modeling</td>
<td></td>
</tr>
<tr>
<td>Jean Lynch-Stieglitz</td>
<td>Professor</td>
<td>EAS</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ocean circulation and climate, isotope geochemistry</td>
<td></td>
</tr>
<tr>
<td>Patrick McGrath</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Personal Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quantitative Genetics, Behavior, GPCR-ligand binding, Epistasis</td>
<td></td>
</tr>
<tr>
<td>Jenny McGuire</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Spatial Ecology and Paleontology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spatial ecology, paleontology, climate change, ecological modeling, terrestrial systems</td>
<td></td>
</tr>
<tr>
<td>Richard Nichols</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Motor control, spinal cord physiology, biomechanics</td>
<td></td>
</tr>
<tr>
<td>Shuyi Nie</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Cellular Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellular mechanics, cytoskeletal regulation, cell-matrix interactions</td>
<td></td>
</tr>
<tr>
<td>Annalise Paaby</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Evolutionary Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Genomics, quantitative genetics, experimental evolutionary biology</td>
<td></td>
</tr>
<tr>
<td>Christine Payne</td>
<td>Associate Professor</td>
<td>CHEM</td>
<td>Biophysical Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nanoscience, fluorescence microscopy, biomaterials</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Programs</td>
<td>Research Areas</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Boris Prilouktski</td>
<td>Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Sensory control of locomotion, peripheral nerve injury, osseointegrated limb prostheses, artificial sensory feedback, neuromechanical modeling</td>
</tr>
<tr>
<td>Jeffrey Skolnick</td>
<td>Professor</td>
<td>SOBS</td>
<td>Systems Biology</td>
<td>Computational Systems Biology, Bioinformatics, Drug Discovery, Protein Structure Prediction</td>
</tr>
<tr>
<td>Simon Sponberg</td>
<td>Assistant Professor</td>
<td>SOBS & PHYS</td>
<td>Experimental Biophysics</td>
<td>Neuromechanics, dynamics of locomotion, multiscale physics of muscle</td>
</tr>
<tr>
<td>Frank Stewart</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Microbial Biology</td>
<td>marine microbial ecology and evolution, microbial symbioses, genomics and metagenomics, microbiology of oxygen minimum zones</td>
</tr>
<tr>
<td>Alberto Stolfi</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Development Neurobiology</td>
<td>Developmental biology, neuroscience, cell biology, gene regulation, genome engineering</td>
</tr>
<tr>
<td>Todd Streelman</td>
<td>Professor</td>
<td>SOBS</td>
<td>Evolutionary Biology</td>
<td>genomics, development, behavior</td>
</tr>
<tr>
<td>Matthew Torres</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Proteomics</td>
<td>Protein Biology and Biochemistry; Cell Signaling; Mass Spectrometry; Proteomics</td>
</tr>
<tr>
<td>Fredrik Vannberg</td>
<td>Assistant Professor</td>
<td>SOBS</td>
<td>Statistical Genetics</td>
<td>genomics of infectious diseases and cancer, algorithm development</td>
</tr>
<tr>
<td>Howie Weiss</td>
<td>Professor</td>
<td>MATH</td>
<td>Microbial Population Dynamics</td>
<td>Microbial population dynamics, transmission of infectious diseases, dynamical systems</td>
</tr>
<tr>
<td>Joshua Weitz</td>
<td>Professor</td>
<td>SOBS</td>
<td>Theoretical Ecology</td>
<td>Viral ecology and evolution, nonlinear dynamics, network science, physics of living systems</td>
</tr>
<tr>
<td>Lewis Wheaton</td>
<td>Associate Professor</td>
<td>SOBS</td>
<td>Physiology</td>
<td>Neurophysiology guiding skillful human-object interactions in upper extremity motor control,</td>
</tr>
<tr>
<td>Kurt Wiesenfeld</td>
<td>Professor</td>
<td>PHYS</td>
<td>Nonlinear Dynamics</td>
<td>Theoretical modeling of nonlinear and stochastic systems</td>
</tr>
<tr>
<td>Loren Williams</td>
<td>Professor</td>
<td>CHEM</td>
<td>Evolution and Chemical Biology</td>
<td>Origins and Evolution of the Ribosome</td>
</tr>
<tr>
<td>Yao Yao</td>
<td>Assistant Professor</td>
<td>MATH</td>
<td>Nonlinear Dynamics</td>
<td>Fluid dynamics, nonlinear dynamics, swarms, asymptotic theory, continuum dynamics</td>
</tr>
<tr>
<td>Soojin Yi</td>
<td>Professor</td>
<td>SOBS</td>
<td>Molecular Evolution</td>
<td>Genome Evolution, Epigenomics, systems biology</td>
</tr>
<tr>
<td>Peter Yunker</td>
<td>Assistant Professor</td>
<td>PHYS</td>
<td>Soft Matter Physics</td>
<td>Mechanics of hierarchical materials, biomechanics, biomaterials, cell packings</td>
</tr>
</tbody>
</table>
Appendix B. Course Listings
The following lists courses eligible for inclusion in a Program of Study. Note that course syllabi are maintained and updated by Professors on a regular basis. Please check with the individual home school for more information. All courses are 3 credit hours unless otherwise noted. Course times and locations are subject to change.

Core Introductory Courses
All of these courses are required for students in the program. Foundations in Quantitative Biosciences will be offered every fall semester. The fall section of BIOL 8801 will include seminars from current QBioS faculty. The spring section of BIOL 8801 will allow students to attend existing seminar courses of their choosing, related to Quantitative Biosciences.

CORE1. BIOL 8804 Foundations of Quantitative Biosciences (4 hrs)
CORE2. BIOL 8801 Seminar in Biology – Quantitative Biosciences (1 hr)
CORE3. BIOL 8801 Seminar in Biology – Quantitative Biosciences (1 hr)

Quantitative Models in the Biosciences (3 hrs)
The following courses satisfy the requirement that students take a single course involving the direct application of quantitative methods to the biosciences. All courses are 3 credit hours, including problem sets, involving mathematical and computational methods.

QBIO1. BIOL 4225/7111 Molecular Evolution
QBIO2. BIOL 6422 Theoretical Ecology
QBIO3. CHEM 6571 Enzymology and Metabolism
QBIO4. EAS 6122 Global Biogeochemical Cycles
QBIO5. EAS 6490 Advanced Environmental Analysis
QBIO6. MATH 6705 Modeling and Dynamics
QBIO7. PHYS 8803 Biophysics

BioScience Electives leverage pre-existing courses in CoS (6 hrs).
Committee can grant permission to take additional courses satisfying these requirements.

Molecular and Cellular Systems Courses

MCS1. BIOL 6608 Prokaryotic Molecular Genetics
MCS2. BIOL 7110/7111 Macromolecular modeling (4 hrs)
 CHEM 8901
MCS3. BIOL 7668 Eukaryotic Molecular Genetics
MCS4. CHEM 6572 Macromolecular structure
MCS5. CHEM 6573 Molecular biochemistry
MCS6. CHEM 6582 Biophysical chemistry
MCS7. PHYS 8803 Biophysics

Chemistry of Biological Systems Courses

CHEB1. BIOL 6418 Microbial Physiology
CHEB2. BIOL 6611 Advanced Microbial Physiology
CHEB3. CHEM 6501 Biochemistry I
CHEB4. CHEM 6502 Biochemistry II
CHEB5. CHEM 6571 Enzymology & Metabolism
CHEB6. CHEM 6582 Biophysical Chemistry
CHEB7. CHEM 6756 & BIOL 6756 Signaling Molecules

Physiology and Behavior Courses
BPH1. APPH 6212 Systems Physiology II: Physiology of Neuromotor Tissues
BPH2. APPH 6213 Systems Physiology III: Integrated Systems and Adaptation
BPH3. APPH 6231 Human Motor Control
BPH4. APPH 6236 Neuromuscular Physiology
BPH5. APPH 6400 Human Neuroanatomy
BPH6. APPH 6600 Muscle Structure & Plasticity
BPH7. BIOL 6570 Immunology and Immunochemistry
BPH8. BIOL 6626 Animal Physiology
BPH9. PSYC 6011 Cognitive Psychology

Ecology Courses
ECO1. BIOL 6410 Microbial Ecology
ECO2. BIOL 6417 Marine Ecology
ECO3. BIOL 6422 Theoretical Ecology
ECO4. BIOL 6620 Aquatic Chemical Ecology
ECO5. BIOL 8802 Special Topics in Community Ecology (2 hrs)
ECO6. BIOL 8803 Environmental Microbial Genomics
ECO7. BIOL 8803 Microbial Symbiosis

Evolution Courses
EVO1. BIOL 7111 Molecular Evolution
EVO2. BIOL 6480 Developmental Biology (2 hrs)
EVO3. BIOL 4545 Human Genetics
EVO4. BIOL 6600 Evolution
EVO5. BIOL 6720 Environmental Microbial Genomics
EVO6. BIOL 7210 Computational Genomics

Earth Systems Courses
ES1. EAS 6122 Biogeochemical Cycles
ES2. EAS 6130 Earth System Modeling
ES3. EAS 6136 Paleoclimatology & Paleoceanography
ES4. EAS 6490 Advanced Environmental Data Analysis
ES5. BIOL 6410 Microbial Ecology
ES6. BIOL 6221 Biological Oceanography
ES7. BIOL 6765/EAS6765 Geomicrobiology
Quantitative Modeling courses (9 hrs)
The following courses satisfy the requirement that students take a course involving rigorous quantitative methods and models. Any MATH 6xxx, 7xxx or 8xxx course is eligible for this requirement, as are many courses in the Colleges of Science, Computing, and Engineering. We include a few representative courses below.

QM1. CHEM 6481 Statistical Mechanics
QM2. CHEM 6755 Theoretical Chemistry of Polymers
QM3. CHEM 8843 Mathematical Methods for Chemistry
QM4. EAS 6502 Introductory Fluid Dynamics
QM5. EAS 8803 Mathematical Methods for Geophysical Fluid Dynamics
QM6. MATH 6221 Advanced Classical Probability Theory
QM7. MATH 6705 Modeling and Dynamics
QM8. PHYS 6124 Mathematical Methods for Physics
QM9. PHYS 6268 Nonlinear Dynamics and Chaos
QM10. PHYS 7123 Nonequilibrium Statistical Physics
QM11. CSE 6643 Numerical Linear Algebra
QM12. CSE 6140 Computational Science and Engineering Algorithms
QM13. CSE 6730 Modeling and Simulation: Fundamentals and Applications
QM14. CSE/ISYE 6740 Machine Learning I: Computational Data Analysis
QM15. CSE 6220 High Performance Computing
QM16. CS 7641 Machine Learning
QM17. APPH 6225 Biostatistics
QM18. ISYE 6404 Nonparametric Data Analysis
QM19. ISYE 6421 Biostatistics
QM20. CS 7492 Simulation of Biology

One course in quantitative modeling may be taken at the 4xxx level. A few representative courses include:

QM*. MATH 4221 Stochastic Processes I
QM*. MATH 4280 Introduction to Information Theory
QM*. MATH 4541 Dynamics and Bifurcations I
QM*. CS 4641 Machine Learning
Appendix C. Sample Course Registration

Fall Semester, Year 1
BIOL 8801, Seminar in Quantitative Biosciences = 1 hour
BIOL 8804, Foundations of Quantitative Biosciences = 4 hours
BIOL 8901 WTZ, Special Problems = 1 hour
Select two other 3-hour courses
Your home school may have requirements such as:
- BIOL or PHYS 8997, 3 audit hours, identifies GTA students
- BIOL or PHYS 8998, 3 audit hours, identifies GRA students
- CETL 8000 (Sections BIO or PH1), TA training

Spring Semester, Year 1
BIOL 8901, Rotation 1 (Advisor Section) = 3 hours
BIOL 8901, Rotation 2 (Advisor Section) = 3 hours
BIOL 8901 JSW = 1 hour
BIOL 8801 = 1 hour
BIOL 8998 WTZ (or GRA Advisor) = 3 hours
Course Work = 3 hours
BIOL 8106 (Tools of Science, RCR requirement) = 2 hours

Summer Semester, Year 1
BIOL 8901 or 8902 or 9000 (Advisor Section) = 12 hours
PHIL 6000 = 1 hour (if you haven’t taken PHIL 6000 or BIOL 8106)
Academic Writing Course
- CETL 8721 = 1 hour (native English speakers)
- CETL 8723 = 2 hours (non-native English speakers)
BIOL 8998 WTZ = 3 hours (can reduce to 2 or 1 hour if needed for 16-hour cap)